• 제목/요약/키워드: vaccine development

검색결과 456건 처리시간 0.032초

Leishmania Vaccines: the Current Situation with Its Promising Aspect for the Future

  • Rasit Dinc
    • Parasites, Hosts and Diseases
    • /
    • 제60권6호
    • /
    • pp.379-391
    • /
    • 2022
  • Leishmaniasis is a serious parasitic disease caused by Leishmania spp. transmitted through sandfly bites. This disease is a major public health concern worldwide. It can occur in 3 different clinical forms: cutaneous, mucocutaneous, and visceral leishmaniasis (CL, MCL, and VL, respectively), caused by different Leishmania spp. Currently, licensed vaccines are unavailable for the treatment of human leishmaniasis. The treatment and prevention of this disease rely mainly on chemotherapeutics, which are highly toxic and have an increasing resistance problem. The development of a safe, effective, and affordable vaccine for all forms of vector-borne disease is urgently needed to block transmission of the parasite between the host and vector. Immunological mechanisms in the pathogenesis of leishmaniasis are complex. IL-12-driven Th1-type immune response plays a crucial role in host protection. The essential purpose of vaccination is to establish a protective immune response. To date, numerous vaccine studies have been conducted using live/attenuated/killed parasites, fractionated parasites, subunits, recombinant or DNA technology, delivery systems, and chimeric peptides. Most of these studies were limited to animals. In addition, standardization has not been achieved in these studies due to the differences in the virulence dynamics of the Leishmania spp. and the feasibility of the adjuvants. More studies are needed to develop a safe and effective vaccine, which is the most promising approach against Leishmania infection.

템플릿 매칭을 이용한 넙치용 백신자동접종시스템 개발 (Development of a vaccine automation injection system for flatfish using a template matching)

  • 이동길;양용수;박성욱;차봉진;허국성;김종락
    • 수산해양기술연구
    • /
    • 제48권2호
    • /
    • pp.165-173
    • /
    • 2012
  • Nationally, flatfish vaccination has been performed manually, and is a laborious and time-consuming procedure with low accuracy. The handling requirement also makes it prone to contamination. With a view to eliminating these drawbacks, we designed an automatic vaccine system in which the injection is delivered by a Cartesian coordinate robot guided by a vision system. The automatic vaccine injection system is driven by an injection site location algorithm that uses a template-matching technique. The proposed algorithm was designed to derive the time and possible angles of injection by comparing a search area with a template. The algorithm is able to vaccinate various sizes of flatfish, even when they are loaded at different angles. We validated the performance of the proposed algorithm by analyzing the injection error under randomly generated loading angles. The proposed algorithm allowed an injection rate of 2000 per hour on average. Vaccination of flatfish with a body length of up to 500mm was possible, even when the orientation of the fish was random. The injection errors in various sizes of flatfish were very small, ranging from 0 to 0.6mm.

Micronutrients and prevention of cervical pre-cancer in HPV vaccinated women: a cross-sectional study

  • Chandrika J Piyathilake;Suguna Badiga;Nongnut Thao;Pauline E Jolly
    • 대한지역사회영양학회지
    • /
    • 제28권1호
    • /
    • pp.61-73
    • /
    • 2023
  • Objectives: Prophylactic vaccines against high-risk human papillomaviruses (HR-HPVs) hold promise to prevent the development of higher grade cervical intraepithelial neoplasia (CIN 2+) and cervical cancer (CC) that develop due to HR-HPV genotypes that are included in HPV vaccines, but women will continue to develop CIN 2+ and CC due to HR-HPV genotypes that are not included in the quadrivalent HPV vaccine (qHPV) and 9-valent HPV vaccine (9VHPV). Thus, the current vaccines are likely to decrease but not entirely prevent the development of CIN 2+ or CC. The purpose of the study was to determine the prevalence and determinants of CIN 2+ that develop due to HR-HPVs not included in vaccines. Methods: Study population consisted of 1476 women tested for 37 HPVs and known to be negative for qHPVs (6/11/16/18, group A, n = 811) or 9VHPVs (6/11/16/18/31/33/45/52/58, group B, n = 331), but positive for other HR-HPVs. Regression models were used to determine the association between plasma concentrations of micronutrients, socio-demographic, lifestyle factors and risk of CIN 2+ due to HR-HPVs that are not included in vaccines. Results: The prevalence of infections with HPV 31, 33, 35 and 58 that contributed to CIN 2+ differed by race. In group A, African American (AA) women and current smokers were more likely to have CIN 2 (OR = 1.76, P = 0.032 and 1.79, P = 0.016, respectively) while in both groups of A and B, those with higher vitamin B12 were less likely to have similar lesions (OR = 0.62, P = 0.036 and 0.45, P = 0.035, respectively). Conclusions: We identified vitamin B12 status and smoking as independent modifiable factors and ethnicity as a factor that needs attention to reduce the risk of developing CIN 2+ in the post vaccination era. Continuation of tailored screening programs combined with non-vaccine-based approaches are needed to manage the residual risk of developing HPV-related CIN 2+ and CC in vaccinated women.

Application of Antimicrobial Peptide LL-37 as an Adjuvant for Middle East Respiratory Syndrome-Coronavirus Antigen Induces an Efficient Protective Immune Response Against Viral Infection After Intranasal Immunization

  • Ju Kim;Ye Lin Yang;Yongsu Jeong;Yong-Suk Jang
    • IMMUNE NETWORK
    • /
    • 제22권5호
    • /
    • pp.41.1-41.16
    • /
    • 2022
  • The human antimicrobial peptide LL-37 has chemotactic and modulatory activities in various immune cells, including dendritic cells. Because of its characteristics, LL-37 can be considered an adjuvant for vaccine development. In this study, we confirmed the possible adjuvant activity of LL-37 in mucosal vaccine development against Middle East respiratory syndrome-coronavirus (MERS-CoV) by means of intranasal immunization in C57BL/6 and human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice. Intranasal immunization using the receptor-binding domain (RBD) of MERS-CoV spike protein (S-RBD) recombined with LL-37 (S-RBD-LL-37) induced an efficient mucosal IgA and systemic IgG response with virus-neutralizing activity, compared with S-RBD. Ag-specific CTL stimulation was also efficiently induced in the lungs of mice that had been intranasally immunized with S-RBD-LL-37, compared with S-RBD. Importantly, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to reduced immune cell infiltration into the lungs after infection with MERS-CoV. Finally, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to enhanced protective efficacy, with increased survival and reduced body weight loss after challenge infection with MERS-CoV. Collectively, these results suggest that S-RBD-LL-37 is an effective intranasal vaccine candidate molecule against MERS-CoV infection.

Acute abdomen following COVID-19 vaccination: a systematic review

  • Nelson Luis Cahuapaza-Gutierrez;Renzo Pajuelo-Vasquez;Cristina Quiroz-Narvaez;Flavia Rioja-Torres;Maria Quispe-Andahua;Fernando M. Runzer-Colmenares
    • Clinical and Experimental Vaccine Research
    • /
    • 제13권1호
    • /
    • pp.42-53
    • /
    • 2024
  • Purpose: Conduct a systematic review of case reports and case series regarding the development of acute abdomen following coronavirus disease 2019 (COVID-19) vaccination, to describe the possible association and the clinical and demographic characteristics in detail. Materials and Methods: This study included case report studies and case series that focused on the development of acute abdomen following COVID-19 vaccination. Systematic review studies, literature, letters to the editor, brief comments, and so forth were excluded. PubMed, Scopus, EMBASE, and Web of Science databases were searched until June 15, 2023. The Joanna Briggs Institute tool was used to assess the risk of bias and the quality of the study. Descriptive data were presented as frequency, median, mean, and standard deviation. Results: Seventeen clinical case studies were identified, evaluating 17 patients with acute abdomen associated with COVID-19 vaccination, which included acute appendicitis (n=3), acute pancreatitis (n=9), diverticulitis (n=1), cholecystitis (n=2), and colitis (n=2). The COVID-19 vaccine most commonly linked to acute abdomen was Pfizer-BioNTech (messenger RNA), accounting for 64.71% of cases. Acute abdomen predominantly occurred after the first vaccine dose (52.94%). All patients responded objectively to medical (88.34%) and surgical (11.76%) treatment and were discharged within a few weeks. No cases of death were reported. Conclusion: Acute abdomen is a rare complication of great interest in the medical and surgical practice of COVID-19 vaccination. Our study is based on a small sample of patients; therefore, it is recommended to conduct future observational studies to fully elucidate the underlying mechanisms of this association.

신약개발의 법적쟁점 - 코로나바이러스 감염증 백신을 중심으로 - (Legal Issues on the Development of New Drug: An Analysis of COVID-19 Vaccine)

  • 이현주;정종구;김혜인
    • 의료법학
    • /
    • 제21권3호
    • /
    • pp.37-75
    • /
    • 2020
  • 지금까지 신약개발 자체를 다루는 연구는 매우 많이 이루어져 왔으며 약리학이라는 독자적인 분야를 이루고 있다. 반면 이를 둘러싸고 발생될 수 있는 규범적인 문제에 대해 본격적으로 다룬 논문이 다른 나라에 비해 상대적으로 국내에서 찾아보기 어렵다. 의료 윤리 맥락에서 신약개발의 규범적인 문제를 다루는 논문이 발견될 뿐이다. 본 논문은 신약개발의 법적쟁점을 다룬다. 기존에 생명윤리 영역에서 다루어 왔던 지점에 그치지 않고 신약개발의 전 영역을 아우르며 발생할 수 있는 법적인 문제를 하나하나 분석해 본다. 다만 이러한 방법은 자칫하면 일반적인 법제 소개에 그쳐 현실적인 효용이 적을 수도 있다. 따라서 요즘 가장 크게 문제가 되고 있는 신종 코로나바이러스 감염증 백신과 관련된 내용을 통해 법적으로 문제되었고 앞으로 문제가 될 수 있는 지점을 중심으로 살펴보겠다. ① 우선 신약개발의 단계를 소개하며, 최근 문제되고 있는 신종 코로나바이러스 감염증에 대비하기 위한 백신 개발 단계를 살펴본다. ② 다음으로 신약 개발의 단계에서 특히 문제되는 법적 쟁점을 소개하며, 신종 코로나바이러스 감염증에 대처하기 위한 백신 개발 단계에서 문제되어 왔고 앞으로 쟁점이 될 수 있는 부분을 검토한다. 이를 통해 신약개발 과정에서 제기되는 법적쟁점이 지니는 규범적인 함의를 모색한다.

Potential Vaccine Targets against Rabbit Coccidiosis by Immunoproteomic Analysis

  • Song, Hongyan;Dong, Ronglian;Qiu, Baofeng;Jing, Jin;Zhu, Shunxing;Liu, Chun;Jiang, Yingmei;Wu, Liucheng;Wang, Shengcun;Miao, Jin;Shao, Yixiang
    • Parasites, Hosts and Diseases
    • /
    • 제55권1호
    • /
    • pp.15-20
    • /
    • 2017
  • The aim of this study was to identify antigens for a vaccine or drug target to control rabbit coccidiosis. A combination of 2-dimensional electrophoresis, immunoblotting, and mass spectrometric analysis were used to identify novel antigens from the sporozoites of Eimeria stiedae. Protein spots were recognized by the sera of New Zealand rabbits infected artificially with E. stiedae. The proteins were characterized by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF/TOF-MS) analysis in combination with bioinformatics. Approximately 868 protein spots were detected by silver-staining, and a total of 41 immunoreactive protein spots were recognized by anti-E. stiedae sera. Finally, 23 protein spots were successfully identified. The proteins such as heat shock protein 70 and aspartyl protease may have potential as immunodiagnostic or vaccine antigens. The immunoreactive proteins were found to possess a wide range of biological functions. This study is the first to report the proteins recognized by sera of infected rabbits with E. stiedae, which might be helpful in identifying potential targets for vaccine development to control rabbit coccidiosis.

한국호흡기형 닭전염성기관지염 생독백신주의 작성 (Development of an attenuated vaccine strain from a korean respiratory type infectious bronchitis virus)

  • 최강석;전우진;이은경;계수정;박미자;권준헌
    • 대한수의학회지
    • /
    • 제51권3호
    • /
    • pp.193-201
    • /
    • 2011
  • An attenuated vaccine strain AVR1/08 of Korean respiratory type of infectious bronchitis virus (IBV) was developed by 89th passages of IBV D85/06 strain in chicken eggs. The AVR1/08 strain had higher virus titer at least 20 times ($10^{1.3}$) than the parent virus D85/06 by egg inoculation method. The AVR1/08 strain had a single point mutation (S to Y) at position 56 of spike protein of IBV compared to parent virus IBV D85/06 strain. The mutation was observed consistently at viruses after 47th passage in chicken eggs. The AVR1/08 strain showed no virulence even after 6 passages in chickens and all chickens inoculated induced anti-IBV antibody 14 days after vaccination. The AVR1/08 strain had broad protective efficacy against QX type Korean nephropathogenic virus (Q43/06 strain), KM91 type Korean nephropathogenic virus (KM91 strain) and Korean respiratory virus (D85/06 strain). In contrast, Massachusetts (Mass) type attenuated vaccine strain H120 showed protection of 37.5 to 50% against these three viruses. Our results indicate that the AVR1/08 strain has potential as an attenuated vaccine effective in controlling IBVs circulating in Korea.

In Vitro Infectivity Assessment by Drug Susceptibility Comparison of Recombinant Leishmania major Expressing Enhanced Green Fluorescent Protein or EGFP-Luciferase Fused Genes with Wild-Type Parasite

  • Sadeghi, Somayeh;Seyed, Negar;Etemadzadeh, Mohammad-Hossein;Abediankenari, Saeid;Rafati, Sima;Taheri, Tahereh
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.385-394
    • /
    • 2015
  • Leishmaniasis is a worldwide uncontrolled parasitic disease due to the lack of effective drug and vaccine. To speed up effective drug development, we need powerful methods to rapidly assess drug effectiveness against the intracellular form of Leishmania in high throughput assays. Reporter gene technology has proven to be an excellent tool for drug screening in vitro. The effects of reporter proteins on parasite infectivity should be identified both in vitro and in vivo. In this research, we initially compared the infectivity rate of recombinant Leishmania major expressing stably enhanced green fluorescent protein (EGFP) alone or EGFP-luciferase (EGFP-LUC) with the wild-type strain. Next, we evaluated the sensitivity of these parasites to amphotericin B (AmB) as a standard drug in 2 parasitic phases, promastigote and amastigote. This comparison was made by MTT and nitric oxide (NO) assay and by quantifying the specific signals derived from reporter genes like EGFP intensity and luciferase activity. To study the amastigote form, both B10R and THP-1 macrophage cell lines were infected in the stationary phase and were exposed to AmB at different time points. Our results clearly revealed that the 3 parasite lines had similar in vitro infectivity rates with comparable parasite-induced levels of NO following interferon-${\gamma}$/lipopolysaccharide induction. Based on our results we proposed the more reporter gene, the faster and more sensitive evaluation of the drug efficiency.