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ABSTRACT

The human antimicrobial peptide LL-37 has chemotactic and modulatory activities in 
various immune cells, including dendritic cells. Because of its characteristics, LL-37 can be 
considered an adjuvant for vaccine development. In this study, we confirmed the possible 
adjuvant activity of LL-37 in mucosal vaccine development against Middle East respiratory 
syndrome-coronavirus (MERS-CoV) by means of intranasal immunization in C57BL/6 and 
human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice. Intranasal immunization 
using the receptor-binding domain (RBD) of MERS-CoV spike protein (S-RBD) recombined 
with LL-37 (S-RBD-LL-37) induced an efficient mucosal IgA and systemic IgG response with 
virus-neutralizing activity, compared with S-RBD. Ag-specific CTL stimulation was also 
efficiently induced in the lungs of mice that had been intranasally immunized with S-RBD-
LL-37, compared with S-RBD. Importantly, intranasal immunization of hDPP4-Tg mice with 
S-RBD-LL-37 led to reduced immune cell infiltration into the lungs after infection with MERS-
CoV. Finally, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to enhanced 
protective efficacy, with increased survival and reduced body weight loss after challenge 
infection with MERS-CoV. Collectively, these results suggest that S-RBD-LL-37 is an effective 
intranasal vaccine candidate molecule against MERS-CoV infection.
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INRODUCTION

The innate immune system plays crucial roles in protection against microbe infection and in 
initiating the inflammatory response; antimicrobial peptides (AMPs) constitute an important 
component of innate immunity (1,2). Among the known AMPs, the host defense peptide 
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cathelicidin (LL-37 in humans and CRAMP in mice) was discovered in its precursor form 
in neutrophil granules, NK T cells, and lung mucosal epithelium. Functional cathelicidin 
peptides are produced by proteolytic cleavage of an inactive precursor protein, hCAP-18, 
through proteolytic elimination of the cathelicidin domain within the secretion pathway 
(3). LL-37 has antimicrobial, antiviral, and immunomodulatory activities against infection 
by multiple types of microbes, enveloped viruses, and fungi on various cells (e.g., epithelial 
cells, monocytes, and T cells) (3,4). In particular, in view of its immunomodulatory activity, 
LL-37 potentiates immune function via dendritic cell (DC) maturation in response to 
immunostimulatory Ags. LL-37 also acts as a danger signal during infection; it connects 
the innate and adaptive immune systems by recruiting immune cells to the site of infection 
(5). Considering that AMPs, including LL-37, have the potential to exert antiviral activity 
and control the careful balance between pro- and anti-inflammatory responses through the 
modulation of inflammatory cytokine expression, these peptides presumably can be used as 
potent vaccine adjuvants (6,7).

Vaccination is conventionally administered by injection using needles, but vaccination via 
mucosal routes is an important and beneficial strategy because various pathogens primarily 
infect mucosal surfaces (8). In particular, the nasal mucosal environment is a good immune 
induction site after vaccine administration because it exhibits low concentrations of secretory 
enzymes, a nonacidic environment, and small mucosal surface areas that require low Ag 
doses. Moreover, intranasal vaccine administration can induce both mucosal and systemic 
immune responses, as demonstrated in studies of immunization against various pathogens 
including tetanus (9), influenza (10), and Streptococcus mutans (11). Importantly, animal studies 
have shown that potent immune responses are induced in the genital and respiratory tracts 
by intranasal immunization in the context of the mucosal immune system (12).

Middle East respiratory syndrome-coronavirus (MERS-CoV) was first isolated in 2012; it 
causes severe pneumonia (13). MERS-CoV infects the lower respiratory tract, leading to 
severe acute respiratory failure and progressive pulmonary fibrosis. MERS-CoV is a large 
single-stranded positive-sense RNA virus; spike (S), a type I transmembrane glycoprotein 
expressed on the MERS-CoV surface, has important roles in the binding, fusion, and entry of 
MERS-CoV into host cells (13,14). The S protein of MERS-CoV binds a novel receptor, human 
dipeptidyl peptidase 4 (DPP4; also known as hDPP4 and CD26) for viral entry into target cells 
(15,16). Thus, most subunit vaccine development approaches against MERS-CoV infection 
have focused on the receptor-binding domain (RBD) of the S protein (i.e., S-RBD). RBD-
based MERS-CoV vaccine candidates typically show high immunogenicity and induce potent 
neutralizing Abs, cell-mediated immunity, and protective effects against MERS-CoV infection 
(17). However, considering that varying degrees of immunogenicity have been reported in 
various MERS-CoV vaccine platforms, adequate adjuvants and an optimal administration 
route are vital for inducing long-lasting protective immunity (18). We hypothesized that 
LL-37, which is a recombinant form of S-RBD, could function as a mucosal vaccine adjuvant 
by modulating the mucosal immune environment to induce efficient mucosal and systemic 
immune induction after intranasal immunization. To test this hypothesis, we assessed the 
mucosal immunomodulatory function of LL-37 against intranasally administered MERS-CoV.
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MATERIALS AND METHODS

Experimental materials and animals
The female C57BL/6 mice used in this study were purchased from Koatech Laboratory Animal 
Center (Pyeongtaek, Korea), and hDPP4-transgenic (hDPP4-Tg) mice were generated as 
previously described (19). All mice were housed in specific pathogen-free conditions with 
food and water provided ad libitum. Animal experiments were approved by the Institutional 
Animal Care and Use Committee of Jeonbuk National University (approval No. CBNU-2019-
00202); all experiments followed the guidelines set forth by the committee. Experiments 
using MERS-CoV were performed in accordance with the World Health Organization’s 
recommendations under biosafety level 3 (BSL3) conditions in a BSL3 facility of the Korea 
Zoonosis Research Institute at Jeonbuk National University (Iksan, Korea). Unless otherwise 
specified, the chemical and laboratory wares used in this study were obtained from Sigma 
Chemical Co. (St. Louis, MO, USA) and SPL Life Sciences (Pocheon, Korea), respectively.

Expression of LL-37-recombinant S-RBD Ag
S-RBD (291–725 amino acids) of the S1 domain of S protein has been previously described 
(20). The gene for LL-37-recombinant S-RBD (S-RBD-LL-37) was synthesized by GenScript 
(Piscataway, NJ, USA) by recombining the human LL-37 gene (Sequence ID: 2K6O_A) to 
the C-terminus of S-RBD (Fig. 1A). The S-RBD gene was amplified from the fused gene 
construct by using the following forward and reverse primer sequences: 5′-GAG CTC AAG 
TAT TAT TCT ATC ATT CCT-3′ (underlined letters represent the SacI restriction site) and 
5′-GGA TCC TTA CTC TAC GAA CAA AGA GGA-3′ (underlined letters represent the BamHI 
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Figure 1. Intranasal immunization of C57BL/6 mice (n=3) with S-RBD-LL-37 induces S-RBD-specific mucosal and systemic Ab responses, together with Ab-
mediated virus inhibition. (A) MERS-CoV RBD region and constructs of S-RBD and LL-37-recombinant S-RBD (S-RBD-LL-37), which were the Ags used in this study. 
(B) Concentrations of fecal IgA (left) and serum IgG (right) in samples collected from C57BL/6 mice at 3 days after the 5th immunization with indicated Ags, as 
determined by ELISA. The experiments were repeated three times; representative results are shown. (C) Concentrations of BALF IgA (left) and IgG (right) in samples 
collected from C57BL/6 mice at 10 days after the 5th immunization with indicated Ags, as determined by ELISAs. The experiments were repeated three times; 
representative results are shown. (D) Fecal and serum samples were pre-incubated with MERS-CoV (104 PFUs). Ab-mediated inhibition of MERS-CoV infection in 
Vero E6 cells was determined by measuring upE gene expression relative to β-actin (internal control) gene expression via qRT-PCR. Data are expressed as relative 
quantitation with the level of the PBS treatment group set as 1. Experiments were repeated three times and representative results are shown. 
*p<0.05, **p<0.01, and ***p<0.001.
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restriction site). The recombinant S-RBD and S-RBD-LL-37 genes were cloned into pCold II, 
an Escherichia coli expression vector system (Takara Bio, Shiga, Japan). Recombinant Ags were 
expressed using BL21(DE3) host cells and purified using Ni-NTA agarose (Qiagen, Hilden, 
Germany). Recombinant Ags were confirmed by sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis and Western blotting using anti-6× His tag (Qiagen) and polyclonal 
anti-RBD Abs. The protein Ags were >95% pure. The residual endotoxin was removed by 
sterile filtration using the Sartobind Q75 column (Sartorius, Goettingen, Germany). The 
final endotoxin contained <0.5 EU/µg of protein, as determined by the LAL chromogenic 
endotoxin quantitation kit (Thermo Fisher Scientific, Rockford, IL, USA). We confirmed 
that the recombinant S-RBD-LL-37 Ag was not cytotoxic to host bacteria by monitoring their 
growth after inducing production of the recombinant Ag (data not shown).

Mouse immunization and sample collection
The control group of mice (n=5) was administered PBS and the treatment group (n=5) was 
intranasally immunized with 10 µg of each Ag (S-RBD and S-RBD-LL-37) once weekly for 
5 wk; fecal and serum samples were collected at 3 days after the fifth immunization, as 
previously described (21). Bronchoalveolar lavage fluid (BALF) was collected from three mice 
per group at 10 days after the fifth immunization by instilling 500 µl of ice-cold PBS into the 
lung and slowly flushing the lungs more than three times.

ELISA
The levels of Ag-specific IgA and IgG in feces, serum, and BALF were measured using indirect 
ELISAs. Briefly, 96-well ELISA plates (MaxiSorp™ immunoplate; Thermo Fisher Scientific 
Europe, Roskilde, Denmark) were coated with 50 µl of S-RBD protein (100 ng/well) that had 
been dissolved in 100 mM bicarbonate/carbonate buffer (pH 9.6) overnight at 4°C, then blocked 
in 5% nonfat dry milk for 2 h at 37°C. After the addition of serially diluted sample to each 
well, plates were incubated for 2 h at 37°C; this was followed by 4 washes with PBS containing 
Tween 20. Bound Abs were incubated with alkaline phosphatase-conjugated anti-mouse IgA 
or IgG secondary Abs for 2 h at 37°C, and p-nitrophenyl phosphate substrate was added. The 
absorbance at 405 nm was recorded using an ELISA plate reader (SPECTROstar Nano; BMG 
Labtech, Ortenberg, Germany). ELISA results were calculated using a standard curve.

Ab-mediated virus inhibition assays
Vero E6 cells were cultured in DMEM (Welgene, Daegu, Korea) containing 10% heat-inactivated 
FBS (HyClone, Logan, UT, USA) at 37°C with 5% CO2; these cells were used for virus inhibition 
assays. To measure Ag-specific Ab-mediated inhibition between the hDPP4 virus receptor 
and MERS-CoV, viral particles were pre-incubated with Abs that had been prepared from 
intranasally immunized mice for 30 min at room temperature; the particles were then added to 
Vero E6 cells. Viral loads in MERS-CoV-infected Vero E6 cells were determined by measuring 
the level of upstream E (upE) gene transcript via quantitative real-time RT-PCR (qRT-PCR). 
Briefly, total RNA was extracted using TRIzol reagent, in accordance with the manufacturer’s 
instructions. RNA was converted into cDNA using the M-MLV Reverse Transcription Kit 
(Promega, Fitchburg, WI, USA). Gene expression quantitation by qRT-PCR was performed with 
the Power SYBR® Green PCR Master Mix (Thermo Fisher Scientific) and Applied Biosystems 
7500 Real-Time PCR System (software version 2.3; Applied Biosystems, Waltham, MA, USA). 
Forward and reverse primer sequences for amplifying the upE gene were 5′-GCC TCT ACA 
CGG GAC CCA TA-3′ and 5′-GCA ACG CGC GAT TCA GTT-3′, respectively. Forward and reverse 
primer sequences for amplifying the internal control β-actin gene were 5′-CGT ACC ACA GGC 
ATT GTG A-3′ and 5′-CTC GTT GCC AAT AGT GAT GA-3′, respectively.
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Abs and flow cytometric analyses
Lungs were collected at 10 days after the fifth immunization, and the lobes were chopped into 
small pieces. The pieces were enzyme-digested twice with collagenase (0.5 mg/ml) and DNase I 
(50 µg/ml) for 1 h at 37°C in a shaking incubator. Lung lymphocytes were isolated from the mixture 
by Percoll-based density gradient centrifugation (Amersham Biosciences, Piscataway, NJ, USA). 
After removing red blood cells using ACK lysis buffer, cells (106) were stimulated with 1 µg of 
S-RBD for 17 or 48 h to prepare samples for flow cytometric analysis to monitor marker expression. 
The following Abs used to monitor the expression of mouse molecules were purchased from 
Miltenyi Biotec Inc. (Bergisch Gladbach, Germany): anti-CD3- FITC, anti-CD4-PC5.5, anti-CD8-
PE, anti-IFN-γ-allophycocyanin (APC), and anti-CD107a-APC. REA control S-FITC, -PC5.5, -PE 
and REA control I-APC were used as isotype controls. For intracellular IFN-γ and surface CD107a 
staining, the lymphocytes were fixed/permeabilized using a BD Cytofix/Cytoperm™ Plus Fixation/
Permeabilization Kit with BD GolgiStop™ protein transport inhibitor containing monensin 
(BD Life Sciences, San Jose, CA, USA), in accordance with the manufacturer’s instructions. Flow 
cytometric analyses were performed using a Cytoflex Flow Cytometer (Beckman Coulter, Inc., Brea, 
CA, USA), and data analyses were performed using CytExpert software (Beckman Coulter, Inc.).

Cytokine expression assays
To analyze cytokine production, lung lymphocytes were collected from three mice per group at 
10 days after the fifth immunization. Lung lymphocytes (5−10×105) were added to each well of a 
24-well plate and stimulated with S-RBD protein (1 µg/well) for 1 or 2 days. The culture medium 
was collected after stimulation; expression levels of mouse IL-10, IFN-γ, TNF-α, and IL-17A 
were quantified using a Cytometric Bead Array Kit (BD Biosciences, Franklin Lakes, NJ, USA), 
in accordance with the manufacturer’s instructions. Briefly, Ab-coated beads for each cytokine 
were mixed and incubated with culture medium, then incubated for 2 h at room temperature 
with PE-conjugated detection Abs. After the beads had been washed, flow cytometric analyses 
were performed using a Cytoflex Flow Cytometer (Beckman Coulter); data analyses were 
performed using FCAP Array™ software (BD Biosciences). Cytokine concentrations were 
calculated using a standard curve that had been generated from cytokine standards.

Immunization of hDPP4-Tg mice and viral challenge
MERS-CoV was propagated in Vero E6 cells and subsequently used to assess hDPP4-Tg mouse 
morbidity and mortality after challenge infection. Briefly, hDPP4-Tg mice were intranasally 
immunized once every week for 5 wk with 10 µg/mouse of each recombinant Ag. Similarly, 
control mice were administered PBS only. Immunized hDPP4-Tg mice were anesthetized 
and intranasally challenge-infected with 105 plaque-forming units (PFUs) of MERS-CoV and 
monitored for their survival, weight, and pathological changes for up to 14 days post-infection 
(dpi). Some of the challenge-infected mice were euthanized at the indicated time points to 
obtain tissue specimens, and the others were euthanized by cervical dislocation on day 14 
following viral infection. All efforts were made to minimize the suffering of the animals.

Histopathology
Lung tissues obtained from MERS-CoV- and sham-infected hDPP4-Tg mice at the indicated 
time points were immediately fixed in 10% neutral-buffered formalin, transferred to 70% 
ethanol, and paraffin embedded. Histopathological evaluations were performed using 
deparaffinized tissue sections that had been stained with hematoxylin and eosin. Tissues 
were examined to identify pathological signs such as denatured and collapsed cell/tissue 
organization, interstitial hemorrhage, inflammatory monocyte infiltration, and alveolar 
septal changes after MERS-CoV infection.

https://doi.org/10.4110/in.2022.22.e41
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Statistical analysis
Statistical analysis was performed using Prism 7 software (GraphPad Software Inc., San 
Diego, CA, USA). Results are presented as means ± SEs of repeated experiments. Unpaired 
Student’s t-tests were used to compare groups; p<0.05, p<0.01, and p<0.001 indicate 
statistically significant differences between compared groups.

RESULTS

Intranasal immunization with LL-37-recombinant S-RBD efficiently induces 
S-RBD-specific mucosal and systemic immune responses in C57BL/6 mice
To assess the effects of LL-37 recombination on enhanced immune response induction 
against S-RBD of MERS-CoV after intranasal immunization, we immunized C57BL/6 mice 
with S-RBD or S-RBD-LL-37 and measured the levels of S-RBD-specific fecal IgA and 
serum IgG (Fig. 1B). The levels of S-RBD-specific fecal IgA (left) and serum IgG (right) were 
significantly higher (approximately 5-fold in fecal IgA and 2-fold in serum IgG; p<0.001 and 
p<0.01, respectively) in S-RBD-LL-37-immunized mice than in S-RBD-immunized mice. 
Fecal IgA production can be induced by intranasal immunization as we detected (22, 23). 
Next, we measured the levels of S-RBD-specific IgA and IgG in BALF from immunized mice 
to determine Ag-specific immune induction in the lung, which is the main target organ 
affected by MERS-CoV infection (Fig. 1C). Similar to the enhanced levels of fecal IgA and 
serum IgG, S-RBD-specific IgA in BALF was significantly higher (p<0.01) by approximately 
2-fold in S-RBD-LL-37-immunized mice, compared with S-RBD-immunized mice. Although 
the difference was not statistically significant, the level of S-RBD-specific IgG in BALF was 
approximately 4.1-fold higher in S-RBD-LL-37-immunized mice than in S-RBD-immunized 
mice. To verify the effects of induced Abs on the inhibition of MERS-CoV infection, we 
measured the level of MERS-CoV upE gene transcript after infecting Vero E6 host cells with 
the virus (104 PFUs), which had been pre-incubated with 100-fold diluted fecal and serum 
samples (Fig. 1D). Importantly, the levels of upE gene transcripts were significantly reduced 
(p<0.05 and p<0.01, respectively) by approximately 75.3% and 83.8% after treatment with 
fecal (left) and serum (right) samples from S-RBD-LL-37-immunized mice, respectively, 
compared with samples from S-RBD-immunized mice. These results demonstrated that 
intranasal immunization with LL-37-recombinant Ag elicited an efficient Ag-specific Ab 
response in mucosal and systemic compartments; the Abs could inhibit MERS-CoV infection 
of host cells.

Intranasal immunization with S-RBD-LL-37 enhances S-RBD-specific effector 
CTL stimulation in C57BL/6 mice
CTLs are the major cell type involved in the elimination of coronavirus infections (24,25). 
CTLs are characterized by the production of Th1 cytokines (e.g., IFN-γ) and surface 
expression of the CD107a degranulation marker (26). In addition, CD4+ CTLs secreting IFN-γ 
(alone or together with TNF-α and IL-2) are capable of secreting cytotoxic granules that 
contain granzyme B; they are able to kill target cells in an Ag-specific manner upon direct 
contact (27,28). To analyze CTL activation upon intranasal immunization of the mice with 
recombinant Ags, lung lymphocytes were prepared from immunized mice and stimulated 
with S-RBD to confirm the expression levels of cell surface markers and cytokines related 
to CTL activation (Fig. 2). After lung lymphocytes had been stimulated with S-RBD, the 
frequency of IFN-γ-producing CD4+ T cells was significantly higher in mice immunized with 
S-RBD-LL-37 (1.02%±0.7%) compared to PBS (0.21%±0.2%) (p<0.05; left panel of Fig. 2A). 
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The frequency of IFN-γ-producing CD8+ T cells was also increased in mice that had been 
immunized with S-RBD-LL-37 (2.33%±2.07%) compared with S-RBD alone (0.63%±0.64%), 
although this difference was not statistically significant (left panel of Fig. 2A). The surface 
expression level of CD107a, representing the cytotoxic potential, was higher in the lung CD4+ 
(0.97%±0.49%) and CD8+ (8.82%±2.64%) T cells of S-RBD-LL-37-immunized mice than 
in PBS- (0.24%±0.22% in CD4+ and 1.55%±1.51% in CD8+ T cells, respectively) or S-RBD-
immunized (0.334%±0.3% in CD4+ and 1.75%±1.21% in CD8+ T cells, respectively) mice; 
these differences were statistically significant (p<0.05 for CD4+ and p<0.001 for CD8+ T 
lymphocytes) (Fig. 2B). Upon analysis of Th1/Th17 cytokine levels in lung lymphocytes that 
had been stimulated for 48 h with S-RBD, we found that the expression levels of IL-10, IFN-γ, 
TNF-α, and IL-17A were higher in S-RBD-LL-37-immunized mice than in mice that had been 
immunized with S-RBD alone; these differences were statistically significant (p<0.001), with 
the exception of IFN-γ. Collectively, these results suggest that intranasal immunization with 
LL-37-recombinant S-RBD efficiently induces Th1/Th17-type immune stimulation, thereby 
promoting CD4+ and CD8+ effector CTL activity.

LL-37 exhibits immune-enhancing adjuvant effects on the induction of 
mucosal and systemic immune responses in hDPP4-Tg mice
Next, we investigated the effects of intranasal immunization with LL-37-recombinant S-RBD 
on the induction of S-RBD-specific mucosal and systemic immune responses in MERS-CoV 
receptor-expressing hDPP4-Tg mice (Fig. 3). Upon analysis of S-RBD-specific fecal IgA and 
serum IgG in hDPP4-Tg mice that had been intranasally immunized with S-RBD or S-RBD-
LL-37, we found that the levels of S-RBD-specific fecal IgA (left) and serum IgG (right) were 
higher in mice immunized with S-RBD-LL-37 than in mice immunized with S-RBD alone; 
this difference was statistically significant in serum samples (p<0.01; Fig. 3A). Next, we 
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Figure 2. Intranasal immunization with S-RBD-LL-37 enhances S-RBD-specific effector CTL stimulation in lung lymphocytes from C57BL/6 mice (n=5). Lung 
lymphocytes were collected at 10 days after the 5th immunization with indicated Ags, then stimulated with S-RBD (1 µg) for up to 48 h. (A) Expression levels of 
IFN-γ in CD4+ (left) and CD8+ (right) cells in lung lymphocytes after stimulation with S-RBD for 17 h were analyzed by flow cytometry. (B) Surface expression levels 
of CD107a in CD4+ (left) and CD8+ (right) cells in lung lymphocytes after stimulation with S-RBD for 48 h were analyzed by flow cytometry. The experiments were 
repeated twice. (C) Cytokine concentrations in culture supernatants collected from lung lymphocytes that had been stimulated with S-RBD (1 µg) for 48 h, as 
determined by cytometric bead array. The experiments were repeated three times; representative results are shown. 
*p<0.05, **p<0.01, and ***p<0.001.
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examined the ability of the induced Abs to inhibit MERS-CoV infection of hDPP4 receptor-
expressing Vero E6 cells (Fig. 3B). Infection of host cells with MERS-CoV (104 PFUs), which 
had been pre-incubated with 100-fold diluted fecal and serum samples that were prepared 
from S-RBD-LL-37-immunized mice, significantly inhibited (p<0.01 and p<0.001, respectively) 
expression of the MERS-CoV upE gene, compared with the control condition. The inhibition 
was significantly enhanced (p<0.01) by treatment with serum samples (right) from S-RBD-
LL-37-immunized mice, compared with serum samples from S-RBD-immunized mice. These 
results indicated that S-RBD-specific Abs were efficiently induced in mucosal and systemic 
immune compartments in hDPP4-Tg mice after intranasal immunization with S-RBD-LL-37; 
the Abs were capable of inducing efficient inhibitory responses against MERS-CoV infection.

Next, to characterize the effects of intranasal immunization with LL-37-recombinant Ag 
on immune stimulation, we analyzed Th1/Th17 cytokine expression in lung lymphocytes 
that had been stimulated for 24 h with S-RBD (Fig. 3C). Similar to the results from the 
experiments with C57BL/6 mice, significantly enhanced expression levels of IL-10, TNF-α, 
and IL-17A were detected in lung lymphocytes prepared from S-RBD-LL-37-immunized 
mice, compared with lung lymphocytes from PBS- or S-RBD-immunized mice (p<0.001). 
Although IFN-γ expression was not significantly higher in the S-RBD-LL-37 group than in 
the S-RBD group, it was significantly higher (p<0.01) in the S-RBD-LL-37 group than in the 
control group; notably, the level in the S-RBD-LL-37 group was highest among the tested 
groups. Collectively, these results supported the findings from experiments with C57BL/6 
mice, indicating that intranasal immunization with LL-37-recombinant Ag efficiently induces 
effector CTL activity-promoting Th1/Th17-type immune stimulation in hDPP4-Tg mice.
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Figure 3. Intranasal immunization with S-RBD-LL-37 induces S-RBD-specific mucosal and systemic Ab responses, together with Ab-mediated virus inhibition, in 
hDPP4-Tg mice (n=3). (A) Concentrations of fecal IgA (left) and serum IgG (right) in samples collected from hDPP4-Tg mice at 3 days after the fifth immunization 
with indicated Ags, as determined by ELISA. (B) Fecal and serum samples were pre-incubated with MERS-CoV (104 PFUs). Ab-mediated inhibition of MERS-
CoV infection in Vero E6 cells was determined by measuring upE gene expression relative to β-actin (internal control) gene expression via qRT-PCR. Data are 
expressed as relative quantitation with the level of the PBS treatment group set as 1. (C) Cytokine concentrations in culture supernatants collected from lung 
lymphocytes that had been stimulated with S-RBD (1 µg) for 24 h, as determined by cytometric bead array. 
*p<0.05, **p<0.01, and ***p<0.001.
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S-RBD-LL-37 elicits potent protective immunity after intranasal 
immunization in hDPP4-Tg mice and prevents lung damage following MERS-
CoV challenge infection
We previously reported that challenge inoculation of 104 or 105 PFUs MERS-CoV in hDPP4-
Tg mice induced 60% body weight loss and 100% mortality at 12 days after infection (19). To 
determine whether intranasal immunization with S-RBD-LL-37 provides efficient protection 
against MERS-CoV challenge infection in hDPP4-Tg mice, we monitored their body weight, 
survival rate, and lung tissue damage findings after MERS-CoV challenge infection (Fig. 4). 
When 105 PFUs MERS-CoV were used for challenge infection, we observed a difference in body 
weight depending on the immunization Ag at 4 days after infection; the difference became 
substantial at 6 days after infection (Fig. 4A, left). Furthermore, in contrast to the 100% 
survival observed in S-RBD-LL-37-immunized mice at 8 days after infection, only 40% of the 
S-RBD-immunized mice survived; this difference was statistically significant (p<0.01). At 14 
days after challenge infection, 60% of the S-RBD-LL-37-immunized mice survived, while all 
other groups of mice died (Fig. 4A, right).

Next, we obtained mouse tissues at 7 days after challenge infection to analyze differences 
in histological manifestations. We did not detect any prominent differences in histological 
manifestations in the liver, brain, spleen, or small intestine among the compared groups. 
However, dissected lung tissues from PBS-immunized and MERS-CoV-challenged hDPP4-
Tg mice showed marked histological abnormalities that were not present in S-RBD-LL-37-
immunized mice (Fig. 4B). For example, we observed major histopathology findings in lung 
tissues (e.g., immune cell infiltration, local bronchial wall thickening, and critical damage 
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Figure 4. Intranasal immunization with LL-37-recombinant S-RBD elicits potent protective immunity and prevents lung damage in hDPP4-Tg mice after MERS-CoV 
challenge infection. Mice were intranasally immunized with indicated Ags and challenged intranasally with 105 PFUs of MERS-CoV. (A) Body weight changes (left) 
and survival rates (right) of the mice (n=5) were monitored at 2-day intervals for 2 wk. Comparisons of survival rate among groups were conducted using the log-
rank test. (B) Histological changes in the lung tissues of hDPP4-Tg mice immunized with indicated Ags (10 µg) and challenged with MERS-CoV (105 PFUs). Tissues 
were prepared 7 days after challenge infection. Arrows indicate immune cell infiltration; arrow heads indicate airspace (scale bars=100 µm). 
*p<0.05, **p<0.01.



10/16https://immunenetwork.org

to lung tissue) that resulted from airspace expansion in lung tissues that had been prepared 
from control PBS- or S-RBD-immunized mice. Additionally, while MERS-CoV challenge-
infected mice displayed squamous metaplasia and epithelial hypertrophy, lung tissue from 
S-RBD-LL-37-immunized mice generally showed reduced extents of various tissue lesions. 
These results suggested that intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 
conferred protection against lung tissue damage evoked by MERS-CoV infection.

DISCUSSION

LL-37 exerts direct antimicrobial activity against bacterial infection; it increases lymphocyte 
activation by inducing cytokine release and facilitating the recruitment of DCs (4). It has 
multiple antiviral activities against numerous viral infections; it prevents virus entry into 
host cells after pre-incubation with Venezuelan equine encephalitis virus (29), respiratory 
syncytial virus (30), dengue virus (31), Zika virus (32), and Ebola virus (33). It also has direct 
antiviral effects against viruses such as Zika virus, human immunodeficiency virus (34), 
and respiratory syncytial virus (35). LL-37 promotes innate immunity by enhancing innate 
immune cell homing and chemokine expression together with adaptive immunity by T cells, 
granulocytes, and monocytes at epithelial surfaces (36-38). The LL-37-mediated immune 
response elicits the development of T cell-dependent Ag-specific Abs through induction of 
a Th17 immune response (4). Importantly, LL-37 also has an immunomodulatory adjuvant 
function that involves targeting Ags to M cells, increasing Ag delivery to immune cells, and 
activating follicular DCs by interacting with its receptor, formyl peptide receptor 2 (FPR2) 
(involved in immune regulation in Peyer’s patch M cells); importantly, FPR2 functions as 
an innate receptor that links innate and adaptive immunity. Also, the LL-37-recombinat Ag 
enhances Ag-specific immune responses in mice by Th17-evoked mucosal and systemic 
immunities and B-cell activation via LL-37-mediated signaling through FPR2, an LL-37 
receptor on M cells (4,39). Based on these findings, we conclude that LL-37 has potential 
as an adjuvant for mucosally administered Ags not only by enhancing the delivery of LL-37-
recombinant Ag to M cells but also by triggering Ag-specific immune responses to enhance 
the immune response to the LL-37-recombinant Ag.

Repeated intranasal administration may induce immune tolerance to an Ag. In particular, 
systemic hypo-responsiveness is induced by the administration of Ags via the intranasal 
pathway or as an aerosol. Mucosal tolerance may be a specific function of T cells expressing 
the γδ form of the T-cell receptor based on a study of aerosol-induced mucosal tolerance 
(40). Also, enhancement of mucosal and systemic immune responses via repeated intranasal 
Ag immunization is mediated by Ag delivery to nasal-associated lymphoid tissue and 
presentation to T cells bearing the αβ T-cell receptor by Ag-presenting cells, including 
DCs (41,42). Several studies have aimed to develop a mucosal vaccine against severe acute 
respiratory syndrome coronavirus 2. Nasal administration of vaccine materials against viral 
pathogens infecting the respiratory tract is believed to mimic natural infection and induce 
IgA production in the nasal cavity. Moreover, to overcome the low antigenicity of nasally 
administered Ags and prevent immune tolerance, Ag targeting to mucosal Ag-uptake cells 
such as M cells facilitates the induction of mucosal immunity. Therefore, we hypothesized 
that LL-37 could be a robust adjuvant to enhance the immunogenicity of a mucosal subunit 
vaccine. In this study, we investigated LL-37 adjuvant activity during intranasal immunization 
with S-RBD of MERS-CoV.
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A MERS epidemic has been ongoing since the first outbreak in 2012 in Saudi Arabia. 
Thus, it is crucial to develop proper measures for preventing and controlling MERS-CoV 
infection, among which a vaccine could play a vital role; however, there is no licensed 
vaccine thus far (43). MERS-CoV is a zoonotic pathogen. Zoonoses originating from and/
or transmitting between human and wildlife represent a significant threat to global health; 
blocking their emergence is a public health priority. To prevent an increase in the risk of 
zoonotic diseases, the vaccine platform applied in this study can be applied to transmitting 
hosts, such as camel for MERS-CoV, which are a common route of viral spread (44). 
MERS-CoV infection in the respiratory tract causes fibrotic lung disease symptoms such 
as alveolar cell damage, inflammation, fibroblast proliferation, and extracellular matrix 
deposition (45). Considering that MERS-CoV infects the lower respiratory tract, leading to 
severe pneumonia and occasional digestive manifestations including diarrhea and nausea/
vomiting, mucosal vaccination against MERS-CoV infection is an important strategy (13,46). 
Intranasal immunization was superior to intramuscular immunization in terms of inducing 
protective immunity against MERS-CoV infection in hDPP4-Tg mice (21). The Ag-specific 
IgA response was greater when S-RBD-LL-37 was administered intranasally compared to 
orally (data not shown). In addition, intranasal immunization more effectively induced a 
mucosal Ag-specific immune response than subcutaneous immunization (47). Intranasal 
administration of vaccines induces durable protection against infection (48). Generally, 
vaccination materials constitute specific Ags and adjuvant that can potentiate vaccine 
efficacy and Ag immunogenicity to induce specific adaptive immunity; a substantive mucosal 
adjuvant is required for the development of an intranasal vaccine because there is a need to 
overcome inefficient Ag delivery into immune induction sites (49). In a previous study, we 
confirmed that FPR2, one of the receptors for LL-37, is expressed in M cells. Additionally, 
when the LL-37-recombinant Ag was administered orally, Ag delivery into the Peyer’s patches, 
a mucosal immune inductive tissue, caused enhanced maturation of the Peyer’s patch 
DCs (4). In that study, we concluded that regulation of the immune environment by LL-37 
helps stimulate DCs, resulting in T cell-mediated Ab induction. In the present study, we 
confirmed the adjuvant effect of LL-37 ligand on the induction of antiviral and Ag-specific 
immune responses after intranasal immunization with recombinant MERS-CoV Ag, such that 
intranasal immunization of C57BL/6 mice and hDPP4-Tg mice with S-RBD-LL-37 induced 
enhanced production of S-RBD-specific mucosal IgA and systemic IgG, compared with 
S-RBD (Figs. 1 and 3).

Both CD8+ T cells and CD4+ T cells have cytolytic functions and induce protective effects 
against viral infection, including infection by influenza (50). Many effector cell populations 
producing IFN-γ in the lung have protective functions at sites of infection (16). The 
frequencies of intracellular IFN-γ- and surface CD107a-expressing CD4+ and CD8+ T cells were 
higher in splenocytes and lung lymphocytes collected from S-RBD-LL-37-immunized mice 
than in the same groups of cells harvested from S-RBD-immunized mice, which suggests 
that Ag-specific effector CTLs were stimulated by intranasal immunization with S-RBD-
LL-37 (Fig. 2A and B). Ag cross-presentation by Ag-presenting cells has been reported. 
DCs acquire exogenous Ags and present the peptides on MHC class I molecules (41,51). 
Also, CD103-CD11bhi DCs capture exogenous Ags and cross-prime and costimulate CD8+ T 
cells in the lungs (52). In addition, LL-37-stimulated DCs enhanced proliferation of IFN-γ-
secreting T cells and promoted the secretion of Th-1-inducing cytokines to facilitate CD8+ T 
cell-mediated resistance to harmful Ags (53). LL-37-stimulated DCs displayed significantly 
upregulated endocytosis, modified phagocytic receptor expression and function, upregulated 
costimulatory molecule expression, enhanced secretion of Th-1-inducing cytokines, and 

https://doi.org/10.4110/in.2022.22.e41

Use of LL-37 as an Intranasal Immunization Adjuvant



12/16https://immunenetwork.org

promoted Th-1 responses in vitro. In this study, S-RBD-LL-37 increased the expression of Th1 
cytokines. Therefore, Ag-presenting cells stimulated with purified RBD protein activate CD8+ 
T cells via Ag cross-presentation. This was confirmed by an ex vivo CD8+ T cell analysis, in 
which isolated CD8+ T cells were stimulated with CD8 T-cell epitope peptides (S395 and S434) 
in C57BL/6 mice (54). The peptide-specific CD8+ T cell response in S-RBD-LL-37 immunized 
mice was greater than that in PBS- and S-RBD-immunized mice (data not shown). Together 
with Ag-specific CTL induction, the efficient stimulation of Th1- and Th17-type cytokines 
(e.g., IL-10, IFN-γ, TNF-α, and IL-17A) suggested that effective cell-mediated immunity was 
induced by intranasal immunization with S-RBD-LL-37 in mice (Figs. 2C and 3C). In the 
mucosal immune system, IL-10 plays essential roles in preventing mucosal damage and 
maintaining mucosal homeostasis, particularly at the intestinal barrier. IL-10 signaling in the 
intestinal macrophages is indispensable for controlling mucosal inflammation. Additionally, 
IL-10 secretion by Th1 cells maintains intestinal homeostasis through a G-protein-coupled 
receptor (55). Given that the balance between Th1 and Th2 responses is important for 
vaccine development, IL-10 induction is needed for the development of mucosal vaccine. 
Importantly, IFN-γ not only plays essential roles in controlling various viral infections 
but also promotes viral clearance through adaptive immunity (30). Considering that pro-
inflammatory cytokines and other IFNs are induced in a delayed manner upon MERS-CoV 
infection of host cells, which adversely affects the host (56), the efficient induction of IFN-γ 
by intranasal immunization with S-RBD-LL-37 may have a critical role in protective immunity 
in hDPP4-Tg mice.

hDPP4, a receptor for MERS-CoV, is not present in mice, hamsters, and ferrets; these 
animals are not susceptible to MERS-CoV infection, which has hampered the progress 
of MERS-CoV research (56). hDPP4 regulates T-cell function, cytokine responses, and 
endothelial metastasis to inflammatory sites (57). Therefore, overexpression of DPP4 may 
lead to immune dysregulation in hDPP4-Tg mice. However, there was no notable difference 
in immune response induction after the intranasal immunization of C57BL/6 mice and 
hDPP4-Tg mice with the recombinant Ags. The Th1-type cytokine response following 
intranasal S-RBD immunization was stronger in hDPP4-Tg mice than in C57BL/6 mice, likely 
because the transgenic mice overexpressed hDPP4, which binds to the RBD of MERS-CoV. 
Respiratory pathway infection and pathological damage in the lung are key characteristics 
of severe human respiratory disease caused by MERS-CoV infection; thus, a transgenic 
animal model that exhibits minimal confounding effects from hDPP4 overexpression, while 
demonstrating appropriate pulmonary pathology, is important for the progress of MERS-
CoV research. Previously, we generated transgenic mice with abundant expression of hDPP4; 
MERS-CoV infection was achieved in these hDPP4-Tg mice, leading to significantly increased 
quantities of viral RNA in the brain, lung, liver, spleen, and intestine (19). MERS-CoV 
infection in the respiratory tract causes fibrotic lung disease symptoms including alveolar cell 
damage, inflammation, and fibroblast proliferation. After hDPP4-Tg mice had been infected 
with MERS-CoV, we detected extensive histopathological changes in the lung, an initial 
infection site and a tissue representative of systemic immunity effects (Fig. 4B). Importantly, 
intranasal immunization with S-RBD-LL-37 prevented histopathological changes in the lung; 
this histological finding confirmed vaccination efficacy in the present study. Moreover, mice 
that had been intranasally immunized with S-RBD-LL-37 showed superior survival after 
challenge infection with MERS-CoV, compared with other groups (Fig. 4A). Collectively, 
our findings indicate that S-RBD-LL-37 can induce efficient humoral and cell-mediated 
immunity; it is a robust recombinant vaccine candidate for intranasal administration to 
prevent MERS-CoV infection.
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