• Title/Summary/Keyword: utilization of slag

Search Result 122, Processing Time 0.045 seconds

Investigation on purification of α-Fe2O3 from zinc smelting iron slag by superconducting HGMS technology

  • Zhang, Peng;Li, Su-qin;Guo, Zi-jie;Zhang, Chang-quan;Yang, Chang-qiao;Han, Shuai-shuai
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.2
    • /
    • pp.16-19
    • /
    • 2018
  • Comprehensive utilization of zinc smelting iron slag not only solves environmental problems but also creates huge economic benefits. This study was conducted on the enrichment and recovery of ${\alpha}-Fe_2O_3$ from zinc smelting iron slag by superconducting HGMS technology. Several variables such as slurry flow velocity, slag concentration, magnetic field intensity and the amount of dispersing agent were tested in magnetic separation. In the experiments, obtained optimal magnetic separation parameters were 1.60 T of magnetic flux intensity, 600 mL/min of slurry flow velocity of, 15 g/L of slag concentration of, 0.10 g/L of dispersing agent. Under this condition, the content of ${\alpha}-Fe_2O_3$ was increased from 86.22% to 94.39% that can approach the Chinese national standard requirements (A level) of iron oxide red. It was concluded that using superconducting HGMS technology was an effective method for the purification of ${\alpha}-Fe_2O_3$ from zinc smelting iron slag.

Investigation on the Utilization Possibility of Vitrified Slag for Sound Absorbing Material (용융고화슬래그를 이용한 흡음재료 활용가능성 검토)

  • Kim, Seong-Jung;Rie, Dong-Ho;Park, Hyun-Seo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.97-103
    • /
    • 2000
  • This study was performed to prove that vitrified slag can be utilized as sound absorbing materials by investigating on heavy metal elution and the properties of sound absorbing rate according to the thickness. The heavy metal elution experiment indicated that heavy metal was not eluted since it was fixed stable in the slag. Vitrified slag generally exhibited a maximum sound absorbing rate around at 600Hz-1kHz and 3kHz in the low and high frequency range, respectively. On the other hand, the absorbing rate increased beyond the range of 7kHz again. The sound absorbing rate varied a little according to the thickness of the material. However, Vitrified slag is likely to the effective as a sound absorbing wall material since it has a sound absorbing rate clover 80% in the low and high frequency region when used as a wall. The results obtained in this study showed that vitrified slag has the recyclable material properties and therefore, highly applicable to sound absorbing materials.

  • PDF

Properties of Compressive Strength of Mortar Based on High-activated Blast Furnace Slag using the Slag by-product as an Activator (슬래그부산물을 자극제로 활용한 고활성 고로슬래그 미분말 모르타르의 압축강도 발현 특성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Koo, Kyung-Mo;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • Recently, many efforts related to the utilization of industrial by-products have been made to reduce carbon dioxide emissions in the construction industry. Of these various efforts, concrete incorporating ground granulated blast furnace slag (BFS) provides many advantages compared to conventional concrete, such as high long-term compressive strength, improved durability and economic benefits because of its latent hydraulic property, and low compressive strength at early curing age. This paper investigates the compressive strength of high-activated ground granulated blast furnace slag blended mortar with slag by-product S type(SBP-S). The results of the experiment revealed that incorporating high-activated ground granulated blast furnace slag would affect the compressive strength of mortar. It was found that increasing the Blaine fineness and replacement ratio of slag by-product S type shows high compressive strength of mortar at early curing age because of its high $SiO_2$ and CaO contents in the slag. It is confirmed that an increase of curing age does not affect the compressive strength of mortar made with slag by-product S type at a high curing temperature. Moreover, it is possible to develop and design concrete manufactured with high-activated ground granulated blast furnace slag as binder considering the acceleration curing conditions and mix proportions.

Phosphate Removal in the Wastewater by the different Size of Granular Converter Slag (입상 전로슬래그의 입도 차이에 따른 인공폐수의 인산염 제거에 관한 연구)

  • Lee, Sang-Ho;Lee, In-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.1
    • /
    • pp.136-142
    • /
    • 2007
  • Recent publications have paid attention on the utilization of solid reagents for the removal of substances causing eutrophication, in particular $PO_4^{3-}$ ions. The adsorption of dissolved inorganic phosphate on slag produced by the refining process of iron ore was fundamentally studied for suppressing the liberation of phosphate from wastewater. This study has been conducted in order to find a possibility to improve the phosphate removal and to evaluate the phosphate removal variation to form hydroxyapatite, when the converter slag is used for phosphate removal. The result shows that the converter slag can be applied to remove phosphate using Freundlich isotherm. The size of converter slag, $2{\sim}0.425 mm$ was more efficient than $2{\sim}4.75mm$ to remove phosphate. In particular, 1 mg/L of phosphate can be removed up to 80% of the initial concentration for the continuous column experiment.

  • PDF

A Study on Fundamental Properties of Rapid Cooling Slag to Utilize as Fine Aggregate for Concrete (콘크리트용 잔골재로 활용하기 위한 습식 급랭 전로슬래그의 기초 물성에 관한 연구)

  • Choi, Yun-Wang;Choi, Byung-Keol;Oh, Se-Wang;Cho, Bong-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Recently, development of substitution aggregate is urgently needed because aggregate shortage is continuing due to the exhaustion of natural aggregate and strict restrictions of environment in construction industry. Therefore, In this study, new processing method to solve the problems of processing method of existing converter slag, namely, rapid cooling slag produced by the rapid cooling and crushing process of the high temperature melten slag into the rotary drum and then using the cooling water, compressed air and steel ball was examined fundamental properties for utilize as fine aggregate for concrete. In addition, through this study, we propose the utilization method of rapid cooling slag as fine aggregate for concrete.

Utilization of Blast Furnace Slag Quenched with Water as a Source of Silicate Fertilizer -III. Effect of Direct Application of Quenched Slag on Rice Yields (급냉광재(急冷鑛滓)의 비료화(肥料化)에 관(關)한 연구(硏究) -III. 수도(水稻)에 대(對)한 급냉광재(急冷鑛滓)의 직접시용(直接施用) 효과)

  • Lim, Dong-Kyu;Shin, Jae-Sung;Park, Young-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.4
    • /
    • pp.319-324
    • /
    • 1985
  • This study was designed to evaluate the feasibility of direct application of quenched slag, as a silicate fertilizer byproduct of iron and steel industry. A field experiment was conducted on a low silica content paddy soil and its effect was compared to over corresponding air-cooled slag of milled commercial silicate fertilizer on rice plant growth and yields. The yields of rice were slightly higher in the commercial air-cooled slag than in the quenched slag, however, there was no significant statistical difference. The silica content of rice plants at harvest was higher in commercial silicate fertilizer than that of quenched slag. The available soil silica was high in quenched slag at the early growing stage, however, at harvest higher in air-cooled slag, which meant that the quenched slag might release silica quickly in soil. This results indicated that the slag could be considered resource as a silicate fertilizer.

  • PDF

A Study on the Strength Property of Recycled Fine Aggregate (Wet Type) Mortar with Blast Furnace Slag (고로슬래그를 사용한 습식 순환 잔골재 모르타르의 강도 특성에 관한 연구)

  • Shim, Jong-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.5
    • /
    • pp.153-160
    • /
    • 2010
  • This study aims to obtain technical data for improvement of utilization of Blast Furnace Slag(BFS), recycled aggregate in the future by complementing fundamental problems of BFS such as manifestation of initial strength and excessive alkali quantity as well as weakness of recycled fine aggregate through manufacturing of recycled fine aggregate mortar using BFS. The recycled aggregate includes the cement paste hardened as the surface and the type of the aggregate, which contains plenty of calcium hydroxide($Ca(OH)_2$) as well as the unhydrated cement. Accordingly, the objectives of this study are to inspect the manufacturing the recycled fine aggregate mortar used with blast furnace slag, to consider the effects of the recycled aggregate on the strength development of ground granulated blast furnace slag, and then to acquire the technical data to take into consideration the further usages of the recycled aggregate and blast furnace slag. In eluted ions from recycled aggregate, it showed that there were natrium($Na^+$) and kalium($K^+$), expected to be flown out of unhydrated cement, as well as calcium hydroxide($Ca(OH)_2$). Application of this water to mix cement mortar with ground granulated blast furnace slag was observed to expedite hydration as calcium hydroxide($Ca(OH)_2$) and unhydrated cement component were expressed to give stimuli effects on ground granulated blast furnace slag. The results of the experiment show that the recycled aggregate mixed with blast furnace slag has comparatively higher hydration activity in 7 day than the mortar not mixed with one in 3 day mortar does, causing the calcium hydroxide in the recycled fine aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag.

Strength Characteristics of Unsaturated Polyester Resin Mortar using Recycled Fine Aggregates

  • Kim, Wha-Jung;Choi, Young-Jun;Jun, Joo-Ho;Kim, Yong-Bae
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.89-97
    • /
    • 1999
  • The purpose of this research is to investigate the utilization of recycled fine aggregates as a material to apply to a building finished walls or as a decorating material in combination with a polymer. The strengths of two resin mortars using recycled fine aggregates and natural fine aggregates was made. In order to improve the workability and the strength of the resin mortar with recycled fine aggregates, partial replacement of recycled fine aggregates with natural ones was made with the application of various type of fillers. The results, it show that the compressive strength and flexural strength of resin mortar using the recycled fine aggregates were about 70% to 100% of those of resin mortar using natural fine aggregates. It was enough to assure the utilization of the recycled fine aggregates as a material for the production of resin mortar. From the result of partial replacement of recycled fine aggregates with natural ones, the compressive strength was Increased from 5% to 15% and the flexural strength was much as 5% to 20% as a result of 70% substitution It was also found that the use of garnet powder shows a similar tendency in the compressive strength and slag powder does in the flexural strength and tensile strength.

  • PDF