• Title/Summary/Keyword: utility tunnel

Search Result 115, Processing Time 0.022 seconds

A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel (지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Ra, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • In this research, thermal design data such as heat transfer coefficient on the wall surface required for ventilation system design which is to prevent the temperature rise in the underground utility tunnel that three sides are adjoined with the ground was investigated in numerical analalysis. The numerical model has been devised including the tunnel lining of the underground utility tunnel in order to take account for the heat transfer in the tunnel walls. The air temperature in the tunnel, wall temperature, and the heating value through the wall based on heating value(117~468 kW/km) of the power cable installed in the tunnel and the wind speed in the tunnel(0.5~4.0 m/s) were calculated by CFD simulation. In addition, the wall heat transfer coefficient was computed from the results analysis, and the limit distance used to keep the air temperature in the tunnel stable was examined through the research. The convective heat transfer coefficient at the wall surface shows unstable pattern at the inlet area. However, it converges to a constant value beyond approximately 100 meter. The tunnel wall heat transfer coefficient is $3.1{\sim}9.16W/m^2^{\circ}C$ depending on the wind speed, and following is the dimensionless number:$Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$. This study has suggested the prediction model of temperature in the tunnel based on the thermal resistance analysis technique, and it is appraised that deviation can be used in the range of 3% estimation.

A Study on Fire Safety Measure for Korean Utility Tunnels Based on Analysis of Fire Safety Performance for Utility Tunnel in Advanced Countries (해외 공동구의 방재성능분석을 통한 국내 공동구에 적합한 방재대책에 관한 연구)

  • 박형주;김상욱
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.71-77
    • /
    • 2001
  • The pipes and cables buried below ground which may have helped to improved city landscapes is becoming direct and indirect cause for various disaster in Korea due to potential possibility of fire. Various types of fire in utility tunnels should be analysed in order to improve its fire safety level, therefore mail problems and shortcomings are checked out as a result of this analysis. By performing both tunnel fire risk analysis and fire safety level comparison in advanced countries, effective measure and approach to required standardization may be presented to bath tunnel structure and its containing cables in order to diminished up to a desirable rate in a near future.

  • PDF

A fundamental study on the development of feasibility assessment system for utility tunnel by urban patterns (도심지 유형별 공동구 설치 타당성 평가시스템 개발에 관한 기초 연구)

  • Lee, Seong-Won;Sim, Young-Jong;Na, Gwi-Tae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.11-27
    • /
    • 2017
  • The road network system of major domestic urban areas such as city of Seoul was rapidly developed and regionally expanded. In addition, many kinds of life-lines such as electrical cables, telephone cables, water&sewerage lines, heat&cold conduits and gas lines were needed in order for urban residents to live comfortably. Therefore, most of the life-lines were individually buried in underground and individually managed. The utility tunnel is defined as the urban planning facilities for commonly installing life-lines in the National Land Planning Act. Expectation effectiveness of urban utility tunnels is reducing repeated excavation of roads, improvement of urban landscape; road pavement durability; driving performance and traffic flow. It can also be expected that ensuring disaster safety for earthquakes and sinkholes, smart-grind and electric vehicle supply, rapid response to changes in future living environment and etc. Therefore, necessity of urban utility tunnels has recently increased. However, all of the constructed utility tunnels are cut-and-cover tunnels domestically, which is included in development of new-town areas. Since urban areas can not accommodate all buried life-lines, it is necessary to study the feasibility assessment system for utility tunnel by urban patterns and capacity optimization for urban utility tunnels. In this study, we break away from the new-town utility tunnels and suggest a quantitative assessment model based on the evaluation index for urban areas. In addition, we also develop a program that can implement a quantitative evaluation system by subdividing the feasibility assessment system of urban patterns. Ultimately, this study can contribute to be activated the urban utility tunnel.

The Analysis of Underground Utility Tunnel Positions using Lineament and GPR (선구조와 지하 투과 레이더를 이용한 지하공동구 위치 해석)

  • Jang, Ho-Sik;Seo, Dong-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.142-150
    • /
    • 2006
  • In this study, GPR and lineament methods are used for the effective construction. GPR method is non-destructive testing to understand underground utility tunnel while lineament method is to understand locational environment. First, soil condition of the subject area is surveyed by location analysis. As the result of GPR survey, small-scale and large-scale of underground utility tunnel's location and scale were estimated. From the result of estimation, it is found that the main cause of underground utility tunnel's generation was not the effect of landslide or disturbed foundation from the excavation work but crack of shear & tension from the effect of fault movement which grew by insulation surroundings. From now on, this investigation method would be very useful in the survey and design stage on site for the effective construction and maintenance.

  • PDF

A Study on Automatic Switch Control System for Systematic Control and History Management of Underground Utility Tunnel Work (지하공동구의 체계적인 통제 및 이력관리를 위한 자동개폐시스템에 대한 연구)

  • Oh, Am-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1443-1448
    • /
    • 2015
  • Most of access control systems for underground utility tunnel work through wired network between central system and the automatic switch control unit. However, there are several issues regarding the absence of network infrastructure and an outdoor reader in a relatively unique environment. To solve these issues we propose an authenticated key based smart phone control system for secure access to the underground utility tunnel and this scheme is anticipated providing us with crucial information about a systemic entrance history and effective management procedures of utility tunnel. In addition, the proposed scheme enables to access to secured control system in smart phone based bluetooth network and it provides information about systemic control and history management for the switch controls through smart phone applications.

Quantitative Risk Assessment for Gas-explosion at Buried Common Utility Tunnel (지하 매설 공동구 내부 가스 폭발에 대한 위험성 평가)

  • Jang, Yuri;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • Keeping the gas pipelines in the common utility tunnel is useful because it has a lower risk of corrosion than conventional burial, and can prevent from excavating construction. But, explosions in common utility tunnels can cause greater damage from the blast overpressure compared to outdoor explosions, due to nature of the confined environment. Despite this fact, however, research on common utility tunnels has been limited to fire hazard and little has been studied on the dangers of explosions. This study developed scenarios of methane gas explosion caused by gas leak from gas piping within the common utility tunnel followed by unknown ignition; the study then calculated the extent of the impact of the explosion on the facilities above, and suggested the needs for designing additional safety measures. Two scenarios were selected per operating condition of safety devices and the consequence analysis was carried out with FLACS, one of the CFD tools for explosion simulation. The overpressures for all scenarios are substantial enough to completely destroy most of the buildings. In addition, we have provided additional measures to secure safety especially reducing incident frequency.

Developments of performance-based evaluation criteria of utility tunnel (성능중심의 공동구 평가 기준 개발)

  • Byun, Yo-Seph;Seong, Joo-Hyun;Cho, Gey-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.715-724
    • /
    • 2022
  • With the enforcement of the infrastructure management act, the importance of utility tunnels that jointly accommodate life-lines such as electricity, communication, water supply, and heating facilities has increased. The currently applied utility tunnel maintenance system is managed in an accident-preventive safety-based evaluation method. However, this evaluation method has limitations in effective maintenance. In this study, performance evaluation items were derived through the Delphi method to suggest a criterion for quantitatively evaluating the performance of utility tunnels, and the weights for each item were calculated through the Analytic Hierarchy Process (AHP) method. In the future, it is judged that a more reasonable performance evaluation standard of utility tunnel can be prepared if modifications and supplements are made through field application.

Seismic Performance Evaluation of the Underground Utility Tunnel by Response Displacement Method and Response History Analysis (응답변위법과 응답이력해석법을 이용한 지중 공동구의 내진성능 평가)

  • Kwon, Ki-Yong;Lee, Jin-Sun;Kim, Yong-Kyu;Youn, Jun-Ung;Jeong, Soon-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.119-133
    • /
    • 2020
  • Underground utility tunnel, the most representative cut and cover structure, is subjected to seismic force by displacement of the surrounding soil. In 2020, Korea Infrastructure Safety Corporation has published "Seismic Performance Evaluation Guideline for Existing Utility Tunnel." This paper introduces two seismic evaluation methods, RDM (Response Displacement Method) and RHA (Response History Analysis) adopted in the guide and compares the methods for an example of an existing utility tunnel. The test tunnel had been constructed in 1988 and seismic design was not considered. RDM is performed by single and double cosine methods based on the velocity response spectrum at the base rock. RHA is performed by finite difference analysis that is able to consider nonlinear behavior of soil and structure together in two-dimensional plane strain condition. The utility tunnel shows elastic behavior for RDM, but shows plastic hinge for RHA under the collapse prevention level earthquake.

Characteristic Analysis of Wireless Channels to Construct Wireless Network Environment in Underground Utility Tunnels (지하공동구 내 무선 네트워크 환경구축을 위한 무선채널 특성 분석)

  • Byung-Jin Lee;Woo-Sug Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.27-34
    • /
    • 2024
  • The direct and indirect damages caused by fires in underground utility tunnels have a great impact on society as a whole, so efforts are needed to prevent and manage them in advance. To this end, research is ongoing to prevent disasters such as fire flooding by applying digital twin technology to underground utility tunnels. A network is required to transmit the sensed signals from each sensor to the platform. In essence, it is necessary to analyze the application of wireless networks in the underground utility tunnel environments because the tunnel lacks the reception range of external wireless communication systems. Within the underground utility tunnels, electromagnetic interference caused by transmission and distribution cables, and diffuse reflection of signals from internal structures, obstacles, and metallic pipes such as water pipes can cause distortion or size reduction of wireless signals. To ensure real-time connectivity for remote surveillance and monitoring tasks through sensing, it is necessary to measure and analyze the wireless coverage in underground utility tunnels. Therefore, in order to build a wireless network environment in the underground utility tunnels. this study minimized the shaded area and measured the actual cavity environment so that there is no problem in connecting to the wireless environment inside the underground utility tunnels. We analyzed the data transmission rate, signal strength, and signal-to-noise ratio for each section of the terrain of the underground utility tunnels. The obtained results provide an appropriate wireless planning approach for installing wireless networks in underground utility tunnels.