• Title/Summary/Keyword: user profile information

Search Result 364, Processing Time 0.022 seconds

Modeling for Efficient QoS support in wireless Networks (무선 네트웍에서의 효율적인 QoS제공을 위한 모델링)

  • 이성협;염익준
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.249-252
    • /
    • 2001
  • This paper focuses on the consideration of not only QoS parameters in wired network, but also QoS parameters in wireless network that supported for the Efficient QoS in the Al1 Service Levels. So, We supposed the "Efficient QoS Model" that guaranteed the QoS parameters "Loss Profile" , "Service Degradation" , "Latency and Jittering" , "Mobility of Mobile User" , "Probability of seamless communication" in wired-wireless networks. And the Method of Efficient QoS support that we supposed consists of "Multicast Routing-RSVP Protocol architecture based on Mobile IP" and "Protocols internetworking model ".

  • PDF

Analysis and Prediction Algorithms on the State of User's Action Using the Hidden Markov Model in a Ubiquitous Home Network System (유비쿼터스 홈 네트워크 시스템에서 은닉 마르코프 모델을 이용한 사용자 행동 상태 분석 및 예측 알고리즘)

  • Shin, Dong-Kyoo;Shin, Dong-Il;Hwang, Gu-Youn;Choi, Jin-Wook
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.9-17
    • /
    • 2011
  • This paper proposes an algorithm that predicts the state of user's next actions, exploiting the HMM (Hidden Markov Model) on user profile data stored in the ubiquitous home network. The HMM, recognizes patterns of sequential data, adequately represents the temporal property implicated in the data, and is a typical model that can infer information from the sequential data. The proposed algorithm uses the number of the user's action performed, the location and duration of the actions saved by "Activity Recognition System" as training data. An objective formulation for the user's interest in his action is proposed by giving weight on his action, and change on the state of his next action is predicted by obtaining the change on the weight according to the flow of time using the HMM. The proposed algorithm, helps constructing realistic ubiquitous home networks.

Personalized and Social Search by Finding User Similarity based on Social Networks (소셜 네트워크 기반 사용자 유사성 발견을 통한 개인화 및 소셜 검색)

  • Park, Gun-Woo;Oh, Jung-Woon;Lee, Sang-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.683-690
    • /
    • 2009
  • Social Networks which is composed of network with an individual in the center in a web support mutual-understanding of information by searching user profile and forming new link. Therefore, if we apply the Social Network which consists of web users who have similar immanent information to web search, we can improve efficiency of web search and satisfaction of web user about search results. In this paper, first, we make a Social Network using web users linked directly or indirectly. Next, we calculate Similarity among web users using their immanent information according to topics, and then reconstruct Social Network based on varying Similarity according to topics. Last, we compare Similarity with Search Pattern. As a result of this test, we can confirm a result that among users who have high relationship index, that is, who have strong link strength according to personal attributes have similar search pattern. If such fact is applied to search algorithm, it can be possible to improve search efficiency and reliability in personalized and social search.

Automatic Road Extraction by Gradient Direction Profile Algorithm (GDPA) using High-Resolution Satellite Imagery: Experiment Study

  • Lee, Ki-Won;Yu, Young-Chul;Lee, Bong-Gyu
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 2003
  • In times of the civil uses of commercialized high-resolution satellite imagery, applications of remote sensing have been widely extended to the new fields or the problem solving beyond traditional application domains. Transportation application of this sensor data, related to the automatic or semiautomatic road extraction, is regarded as one of the important issues in uses of remote sensing imagery. Related to these trends, this study focuses on automatic road extraction using Gradient Direction Profile Algorithm (GDPA) scheme, with IKONOS panchromatic imagery having 1 meter resolution. For this, the GDPA scheme and its main modules were reviewed with processing steps and implemented as a prototype software. Using the extracted bi-level image and ground truth coming from actual GIS layer, overall accuracy evaluation and ranking error-assessment were performed. As the processed results, road information can be automatically extracted; by the way, it is pointed out that some user-defined variables should be carefully determined in using high-resolution satellite imagery in the dense or low contrast areas. While, the GDPA method needs additional processing, because direct results using this method do not produce high overall accuracy or ranking value. The main advantage of the GDPA scheme on road features extraction can be noted as its performance and further applicability. This experiment study can be extended into practical application fields related to remote sensing.

Recommendation System based on Tag Ontology and Machine Learning (태그 온톨로지와 기계학습을 이용한 추천시스템)

  • Kang, Sin-Jae;Ding, Ying
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.5
    • /
    • pp.133-141
    • /
    • 2008
  • Social Web is turning current Web into social platform for knowing people and sharing information. This paper takes major social tagging systems as examples, namely delicious, flickr and youtube, to analyze the social phenomena in the Social Web in order to identify the way of mediating and linking social data. A simple Tag Ontology (TO) is proposed to integrate different social tagging data and mediate and link with other related social metadata. Through several machine learning for tagging data, tag groups and similar user groups are extracted, and then used to learn the tagging ontology. A recommender system adopting the tag ontology is also suggested as an applying field.

  • PDF

Content Restructure Model for Learning Contents using Dynamic Profiling (온라인 교육 환경에서 동적 프로파일 기반 학습 콘텐츠 재구성 모델의 제안)

  • Choi, Ja-Ryoung;Sin, Eun Joo;Lim, Soon-Bum
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.279-284
    • /
    • 2018
  • With the availability of real-time student behavioral data, personalization on education is gaining a huge traction. Data collected from massively open online courses (MOOC) has shifted the content delivery method from fixed, static to user-adopted form. Such educational content can be personalized by student's level of achivement. In this paper, we propose a service that automates the content restructuring, based on dynamic profile. With the student behavioral data, the proposed service restructures educational content by changing the order, extending and shrinking the published material. To do this, we record students' behavioral data and content information as a metadata, which will be used to generate dynamic profile.

EPUB eBook Converting Schemes for Improving User Interactions (사용자의 인터렉션 향상을 위한 EPUB eBook 변환 기법)

  • Lee, Namhui;Kim, Jai-Hoon;Kim, Kangseok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.3
    • /
    • pp.117-124
    • /
    • 2017
  • To access PDF documents on an electronic book, PDF documents need to be converted into EPUB which is a standard format of the electronic book. When converting a PDF document into EPUB format, we need to convert color representations from CMYK into RGB representation. It is possible to give a visual effect and a user interaction using a video and JavaScript supported by EPUB format. The schemes for converting from PDF to EPUB are studied in this paper. (1) The first study is to carry out not to lose the color conversion effect using an ICC profile. (2) The second one is a layout configuration in the conversion process. (3) The third one is to highlight a specific content such as quiz platform to provide interactive visual effect for electronic book readers. Finally, in this paper we will show the usability of EPUB based eBook converting scheme through user study.

User-Centered Document Ranking Technique using Term Association Analysis (용어 연관성 분석을 이용한 사용자 위주의 문서순위결정 기법)

  • U, Seon-Mi;Yu, Chun-Sik;Kim, Yong-Seong
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.2
    • /
    • pp.149-156
    • /
    • 2001
  • 정보의 가치와 사용자의 정보획득 요구가 증대됨에 따라 특정 개인 위주의 서비스를 제공하는 정보검색 시스템의 필요성이 증대되고 있다. 그러나 현재의 정보검색 시스템들은 사용자의 선호도를 반영하고 편의성을 제공하는 면에서 매우 미흡한 점들이 많다. 따라서 본 논문에서는 적합성 정도에 따라 최적의 문서를 제공하기 위하여 사용자 위주의 문서순위결정 기법을 제안한다. 특정 개인의 선호도(preference)를 반영하기 위하여 사용자 프로파일(User Profile)을 구성 및 갱신하고, LSA(Latent Semantic Analysis)를 적용하여 적합율에 따라 문서의 순위를 결정한다.

  • PDF

Collaborative Filtering using User Profiles Considering Temporal Variation and Context Information (시간적 변화를 고려한 사용자 프로파일과 컨텍스트 정보를 적용한 협력적 필터링)

  • Lee, Se-Il;Lee, Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.261-264
    • /
    • 2007
  • 유비궈터스 환경의 추천 시스템에서는 협력적 필터링을 위하여 컨텍스트 정보를 사용하고 있으나, 컨텍스트 정보의 부족으로 인하여 추천 결과가 정확하지 않는 경우가 발생하게 된다. 이러한 문제를 해결하기 위하여 컨텍스트 정보와 더불어 사용자 프로파일의 서비스 이력 정보를 사용하였으나, 사용자 프로파일의 서비스 이력 정보는 시간이 지남에 따라 사용자의 기호가 변하거나 유행에 영향을 받을 수 있는 문제점이 있다. 또한 컨텍스트 정보와 사용자 프로파일의 서비스 이력 정보는 상황에 따라 적절히 연동하지 못하여 부정확한 예측을 할 수가 있다. 본 논문에서는 시간의 경과에 따라 사용자의 기호나 유행이 변하는 경우, 사용자 프로파일의 서비스 이력 정보들을 일률적인 값으로 적용하는 것이 아니라 시간에 따라 가중치를 달리 적용하는 방법을 사용하였다. 그리고 컨텍스트 정보와 사용자 프로파일의 서비스 이력 정보가 상황에 따라 적절히 연동하지 못하는 문제는 협력적 필터링하여 나온 결과에 컨텍스트 정보와 사용자 프로파일의 서비스 이력 정보의 가중치를 달리 적용하여 통합함으로써 예측성을 높일 수 있었다.

  • PDF

Collaborative Filtering using User Profiles Informal ion and Real-Time Context Information (사용자 프로파일 정보와 실시간 컨텍스트 정보를 이용한 협력적 필터링)

  • Lee Se-Il;Lee Sang-Yong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.336-339
    • /
    • 2006
  • 추천시스템에서 가장 많이 사용하고 있는 협력적 필터링 방법을 모바일 기기 등에서 사용하려면 추천 정보와 사용자들의 평가 정보가 부족하여 추천의 질이 떨어지게 된다. 이러한 문제를 해결하기 위해 실시간으로 얻어진 컨텍스트 정보를 정량화하여 협력적 필터링에 적용함으로써 보다 나은 추천 결과를 얻을 수 있었다. 그럼에도 불구하고 평가를 하기 위한 컨텍스트 정보가 충분하지 못한 경우 부정확한 결과를 가져올 수 있다. 또한 사용자 정보 평가 과정 중 정량화 단계의 분류 과정을 단순히 하게 되면 서비스 받는 사용자가 정확한 그룹에 분류되어 정확도가 결여되는 문제가 발생한다. 본 논문에서는 실시간으로 얻을 수 있는 컨텍스트 정보가 부족한 경우, 내용 기반 필터링에서 많이 사용하고 있는 사용자 프로파일 정보를 실시간 컨텍스트 정보와 결합한다. 그리고 정량화 단계를 개선하여 협력적 필터링함으로써 기존의 방법보다 향상된 결과를 얻을 수 있다.

  • PDF