• 제목/요약/키워드: user profile information

Search Result 364, Processing Time 0.028 seconds

Predicting User Profile based on user behaviors (모바일 사용자 행태 기반 프로파일 예측)

  • Sim, Myo-Seop;Lim, Heui-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.7
    • /
    • pp.1-7
    • /
    • 2020
  • As the performance of mobile devices has dramatically improved, users can perform many tasks in a mobile environment. This means that the use of behavior information stored in the mobile device can tell a lot of users. For example, a user's text message and frequently used application information (behavioral information) can be utilized to create useful information, such as whether the user is interested in parenting(profile prediction). In this study, I investigate the behavior information of the user that can be collected in the mobile device and propose the item that can profile the user. And I also suggest ideas about how to utilize profiling information.

User Profile based Personalized Web Agent (사용자 프로파일 기반 개인 웹 에이전트)

  • So, Young-Jun;Park, Young-Tack
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.3
    • /
    • pp.248-256
    • /
    • 2000
  • This paper presents a personalized web agent that constructs user profile which consists of user preferences on the web and recommends his/her relevant information to the user. The personalized web agent consists of monitor agent, user profile construction agent, and user profile refinement agent. The monitor agent makes a user describe his/her preferences directly and it creates the database of preference document, finally performs several keyword extraction to increase the accuracy of the DB. The user profile construction agent transforms the extracted keywords into user profile that could be confirmed and edited by the user. and the refinement agent refines user profile by recursively learning and processing user feedback. In this paper, we describe the several keyword weighting and inductive learning techniques in detail. Finally, we describe the adaptive web retrieval and push agent that perform adaptive services to the user.

  • PDF

Intelligent information filtering using rough sets

  • Ratanapakdee, Tithiwat;Pinngern, Ouen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1302-1306
    • /
    • 2004
  • This paper proposes a model for information filtering (IF) on the Web. The user information need is described into two levels in this model: profiles on category level, and Boolean queries on document level. To efficiently estimate the relevance between the user information need and documents by fuzzy, the user information need is treated as a rough set on the space of documents. The rough set decision theory is used to classify the new documents according to the user information need. In return for this, the new documents are divided into three parts: positive region, boundary region, and negative region. We modified user profile by the user's relevance feedback and discerning words in the documents. In experimental we compared the results of three methods, firstly is to search documents that are not passed the filtering system. Second, search documents that passed the filtering system. Lastly, search documents after modified user profile. The result from using these techniques can obtain higher precision.

  • PDF

A Context-Awareness Modeling User Profile Construction Method for Personalized Information Retrieval System

  • Kim, Jee Hyun;Gao, Qian;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.122-129
    • /
    • 2014
  • Effective information gathering and retrieval of the most relevant web documents on the topic of interest is difficult due to the large amount of information that exists in various formats. Current information gathering and retrieval techniques are unable to exploit semantic knowledge within documents in the "big data" environment; therefore, they cannot provide precise answers to specific questions. Existing commercial big data analytic platforms are restricted to a single data type; moreover, different big data analytic platforms are effective at processing different data types. Therefore, the development of a common big data platform that is suitable for efficiently processing various data types is needed. Furthermore, users often possess more than one intelligent device. It is therefore important to find an efficient preference profile construction approach to record the user context and personalized applications. In this way, user needs can be tailored according to the user's dynamic interests by tracking all devices owned by the user.

XML based on Clustering Method for personalized Product Category in E-Commerce

  • Lee, Kwon-Soo;Kim, Hoon-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.118-126
    • /
    • 2003
  • In data mining, having access to large amount of data sets for the purpose of predictive data does not guarantee good method, even where the size of Real data is Mobile commerce unlimited. In addition to searching expected Goods objects for Users, it becomes necessary to develop a recommendation service based on XML. In this paper, we design the optimized XML Recommender product data. Efficient XML data preprocessing is required, include of formatting, structural, and attribute representation with dependent on User Profile Information. Our goal is to find a relationship among user interested products from E-Commerce and M-Commerce to XDB. Firstly, analyzing user profiles information. In the result creating clusters with analyzed user profile such as with set of sex, age, job. Secondly, it is clustering XML data which are associative products classify from user profile in shopping mall. Thirdly, after composing categories and goods data in which associative objects exist from the first clustering, it represent categories and goods in shopping mall and optimized clustering XML data which are personalized products. The proposed personalized user profile clustering method has been designed and simulated to demonstrate it's efficient.

  • PDF

Context Based User Profile for Personalization in Ubiquitous Computing Environments (유비쿼터스 컴퓨팅 환경에서 개인화를 위한 상황정보 기반 사용자 프로파일)

  • Moon, Ae-Kyung;Kim, Hyung-Hwan;Park, Ju-Young;Choi, Young-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.542-551
    • /
    • 2009
  • We proposed the context based user profile which is aware of its user's situation and based on user's situation it recommends personalized services. The user profile which consists of (context, service) pair can be acquired by the context and the service usage of a user; it then can be used to recommend personalized services for the user. In this paper, we show how they can be evolved without previously known user information so that not to violate privacy during the learning phase; in the result our user profile can be applied to any new environment without any modification to model only except context profiles. Using context-awareness based user profile, the service usage pattern of a user can be learned by the union of contexts and the preferred services can be recommended by the current environments. Finally, we evaluate the precision of proposed approach using simulation with data sets of UCI depository and Weka tool-kit.

Client Profile Framework for Providing Adapted Content to Context (상황에 적응화된 콘텐츠 제공을 위한 클라이언트 프로파일 프레임워크)

  • Kim, Kyung-Sik;Lee, Jae-Dong
    • The KIPS Transactions:PartC
    • /
    • v.14C no.3 s.113
    • /
    • pp.293-304
    • /
    • 2007
  • In this paper, a client-side framework for processing of the profile that is necessary for providing adapted content to user's context in the client is designed and implemented. The profile must be constituted context information and various user's information for providing the adapted content to user's context. The client device also provides functionalities such as the creation, the management, and the transmission of the profile. The profile which is used in the proposed profile framework consists of various related information of a user for content adaptation. The technology such as creation, transmission and manage of the profile for effective processing is proposed and apply this technologies to client profile framework during the design are applied. As the result of evaluation, techniques of the proposed framework for processing profiles is more effective than previous techniques.

A Context Aware DVB Recommendation System based on Real-time Adjusted User Profiles (실시간 사용자 프로파일을 반영한 상황인지 DVB 방송 추천 시스템)

  • Park, Young-Min;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1244-1248
    • /
    • 2010
  • The previous study of Digital Broadcasting Recommendation system is based on user explicit profiling information. But user profile is always changing and the exact extraction of user profile is very important in recommendation system like Digital TV using many user interactions. This paper is studied of realtime user profiles aggregation through user remote controller input and matching this profiles with contents meta-data like contents genre information, event information, content viewing time. It is not used commercial database system and network communication solution considering embedded system hardware restriction. And it is considered people want different content genre based on watching time. From the results of this paper, there are improvement of user satisfaction of contents recommendation.

A Deep Learning Model for Predicting User Personality Using Social Media Profile Images

  • Kanchana, T.S.;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.265-271
    • /
    • 2022
  • Social media is a form of communication based on the internet to share information through content and images. Their choice of profile images and type of image they post can be closely connected to their personality. The user posted images are designated as personality traits. The objective of this study is to predict five factor model personality dimensions from profile images by using deep learning and neural networks. Developed a deep learning framework-based neural network for personality prediction. The personality types of the Big Five Factor model can be quantified from user profile images. To measure the effectiveness, proposed two models using convolution Neural Networks to classify each personality of the user. Done performance analysis among two different models for efficiently predict personality traits from profile image. It was found that VGG-69 CNN models are best performing models for producing the classification accuracy of 91% to predict user personality traits.

PIRS : Personalized Information Retrieval System using Adaptive User Profiling and Real-time Filtering for Search Results (적응형 사용자 프로파일기법과 검색 결과에 대한 실시간 필터링을 이용한 개인화 정보검색 시스템)

  • Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.21-41
    • /
    • 2010
  • This paper proposes a system that can serve users with appropriate search results through real time filtering, and implemented adaptive user profiling based personalized information retrieval system(PIRS) using users' implicit feedbacks in order to deal with the problem of existing search systems such as Google or MSN that does not satisfy various user' personal search needs. One of the reasons that existing search systems hard to satisfy various user' personal needs is that it is not easy to recognize users' search intentions because of the uncertainty of search intentions. The uncertainty of search intentions means that users may want to different search results using the same query. For example, when a user inputs "java" query, the user may want to be retrieved "java" results as a computer programming language, a coffee of java, or a island of Indonesia. In other words, this uncertainty is due to ambiguity of search queries. Moreover, if the number of the used words for a query is fewer, this uncertainty will be more increased. Real-time filtering for search results returns only those results that belong to user-selected domain for a given query. Although it looks similar to a general directory search, it is different in that the search is executed for all web documents rather than sites, and each document in the search results is classified into the given domain in real time. By applying information filtering using real time directory classifying technology for search results to personalization, the number of delivering results to users is effectively decreased, and the satisfaction for the results is improved. In this paper, a user preference profile has a hierarchical structure, and consists of domains, used queries, and selected documents. Because the hierarchy structure of user preference profile can apply the context when users perfomed search, the structure is able to deal with the uncertainty of user intentions, when search is carried out, the intention may differ according to the context such as time or place for the same query. Furthermore, this structure is able to more effectively track web documents search behaviors of a user for each domain, and timely recognize the changes of user intentions. An IP address of each device was used to identify each user, and the user preference profile is continuously updated based on the observed user behaviors for search results. Also, we measured user satisfaction for search results by observing the user behaviors for the selected search result. Our proposed system automatically recognizes user preferences by using implicit feedbacks from users such as staying time on the selected search result and the exit condition from the page, and dynamically updates their preferences. Whenever search is performed by a user, our system finds the user preference profile for the given IP address, and if the file is not exist then a new user preference profile is created in the server, otherwise the file is updated with the transmitted information. If the file is not exist in the server, the system provides Google' results to users, and the reflection value is increased/decreased whenever user search. We carried out some experiments to evaluate the performance of adaptive user preference profile technique and real time filtering, and the results are satisfactory. According to our experimental results, participants are satisfied with average 4.7 documents in the top 10 search list by using adaptive user preference profile technique with real time filtering, and this result shows that our method outperforms Google's by 23.2%.