• 제목/요약/키워드: useful lifetime

Search Result 145, Processing Time 0.027 seconds

Study on Optimization of Operating Conditions for High Temperature PEM Fuel Cells Using Design of Experiments (실험계획법을 이용한 고온 고분자 전해질 막 연료전지의 운전조건 최적화 연구)

  • Kim, Jintae;Kim, Minjin;Sohn, Youngjun
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.50-60
    • /
    • 2013
  • High temperature proton exchange membrane fuel cells (PEMFCs) using phosphoric acid (PA) doped polybenzimidazole (PBI) membranes have been concentrated as one of solutions to the limits with traditional low temperature PEMFCs. However, the amount of reported experimental data is not enough to catch the operational characteristics correlated with cell performance and durability. In this study, design of experiments (DOE) based operational optimization method for high temperature PEMFCs has been proposed. Response surface method (RSM) is very useful to effectively analyze target system's characteristics and to optimize operating conditions for a short time. Thus RSM using central composite design (CCD) as one of methodologies for design of experiments (DOE) was adopted. For this work, the statistic models which predict the performance and degradation rate with respect to the operating conditions have been developed. The developed performance and degradation models exhibit a good agreement with experimental data. Compared to the existing arbitrary operation, the expected cell lifetime and average cell performance during whole operation could be improved by optimizing operating conditions. Furthermore, the proposed optimization method could find different new optimal solutions for operating conditions if the target lifetime of the fuel cell system is changed. It is expected that the proposed method is very useful to find optimal operating conditions and enhance performance and durability for many other types of fuel cell systems.

Utilization of the surface damage as gettering sink in the silicon wafers useful for the solar cell fabrication (태양전지용 규소 기판에 존재하는 기계적 손상의 gettering 공정에의 활용)

  • Kim, Dae-Il;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.2
    • /
    • pp.66-70
    • /
    • 2006
  • Various kind of structural defects are observed to be present on the oxidized surface of the silicon crystal which was previously damaged mechanically. The formation of such defects was found to depend on the amount of damage induced and the temperature of thermal oxidation. It was confirmed by the measurement of minority carrier life time that gettering capability decreases as the size of the defects increase. The strained layer which is formed due to smaller amount of damage or lower oxidation temperature believed to has higher capability of gettering over defects like dislocation loops or stacking faults.

A Developmental Methodology of Environmental Impact Assessment: Application of Health Risk Assessment (환경영향평가에 있어서 건강위해성평가 기법의 활용방안에 관한 연구)

  • Koo, J.K.;Chung, Y.
    • Journal of Environmental Impact Assessment
    • /
    • v.1 no.1
    • /
    • pp.51-59
    • /
    • 1992
  • Environmental Impact Assessment(EIA) is defined as an activity designed to identify and predict the impact on the environment. In the process of an EIA, the quantitative evaluation is generally performed for the air and water quality which have the national environmental quality standards. But the predicted values for the air and water quality are simply compared to the environmental standards. At present, the EIA process of Korea has no consideration for the possible human health risk resulting from the development projects. Environmental Health Impact Assessment(EHIA) is an applied methodology of EIA to estimate the acceptable health risk caused by a specified level of environmental pollutants. Estimating the excessive lifetime risk that is a possibility of dying of a certain disease by environmental contaminants, is useful as an evaluation technique of EHIA. It is recommanded the decision-makers to make efficient use of EHIA not only the development projects but also legislative proposals, policies and programmes in future.

  • PDF

The reality of benefits for retirement and the measures for annuitization of the occupational pension (퇴직급여 현황과 퇴직연금의 연금화 방안)

  • Jung, Se Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1165-1172
    • /
    • 2012
  • The purpose of this paper is to investigate the reality of the occupational pension and suggest annuitization over a lifetime of the occupational pension for the purpose of securing income after retirement. A survey and the empirical analysis such as regression and crosstabulation analysis are employed. An research on a case study of an advanced countries is also conducted. The crosstabulation analysis shows that the post-retirement amenities of the self-employed person and the lower income bracket are serious. Individual retirement pension is suggested for the self-employed person and Riester Pension in Germany is recommended for the lower income bracket. The cases in Australia and the UK are useful for annuitization over a lifetime of the occupational pension.

A Study on Efficient Sensor Node Operations Through Construction and Analysis of U-Campus Environment Information System (U-캠퍼스 환경 정보 시스템 구축 및 분석을 통한 효율적인 센서 노드 운용에 대한 연구)

  • Lee, Min-Jae;Jeon, Chan-Sik;Oh, Seung-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • Sensor networks applications can be employed by a vast range of applications. Environmental information monitoring systems and ecosystem surveillance are representative application using sensor networks. But, limited battery capacity of sensor node is a key feature that determines lifetime of networks and system. It also affects quality of collected data. We recognized factors that affects lifetime of environment sensor nodes through the experiment of environment information system deployed over campus. We will show useful proposals for future construction of sensor network application systems.

Symptom-based reliability analyses and performance assessment of corroded reinforced concrete structures

  • Chen, Hua-Peng;Xiao, Nan
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1183-1200
    • /
    • 2015
  • Reinforcement corrosion can cause serious safety deterioration to aging concrete structures exposed in aggressive environments. This paper presents an approach for reliability analyses of deteriorating reinforced concrete structures affected by reinforcement corrosion on the basis of the representative symptoms identified during the deterioration process. The concrete cracking growth and rebar bond strength evolution due to reinforcement corrosion are chosen as key symptoms for the performance deterioration of concrete structures. The crack width at concrete cover surface largely depends on the corrosion penetration of rebar due to the expansive rust layer at the bond interface generated by reinforcement corrosion. The bond strength of rebar in the concrete correlates well with concrete crack width and decays steadily with crack width growth. The estimates of cracking development and bond strength deterioration are examined by experimental data available from various sources, and then matched with symptom-based lifetime Weibull model. The symptom reliability and remaining useful life are predicted from the predictive lifetime Weibull model for deteriorating concrete structures. Finally, a numerical example is provided to demonstrate the applicability of the proposed approach for forecasting the performance of concrete structures subject to reinforcement corrosion. The results show that the corrosion rate has significant impact on the reliability associated with serviceability and load bearing capacity of reinforced concrete structures during their service life.

Fuzzy Reliability Analysis Models for Maintenance of Bridge Structure Systems (교량구조시스템의 유지관리를 위한 퍼지 신뢰성해석 모델)

  • 김종길;손용우;이증빈;이채규;안영기
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.103-114
    • /
    • 2003
  • This paper aims to propose a method that helps maintenance engineers to evaluate the damage states of bridge structure systems by using a Fuzzy Fault Tree Analysis. It may be stated that Fuzzy Fault Tree Analysis may be very useful for the systematic and rational fuzzy reliability assessment for real bridge structure systems problems because the approach is able to effectively deal with all the related bridge structural element damages in terms of the linguistic variables that incorporate systematically experts experiences and subjective judgement. This paper considers these uncertainties by providing a fuzzy reliability-based framework and shows that the identification of the optimum maintenance scenario is a straightforward process. This is achieved by using a computer program for LIFETIME. This program can consider the effects of various types of actions on the fuzzy reliability index profile of a deteriorating structures. Only the effect of maintenance interventions is considered in this study. However. any environmental or mechanical action affecting the fuzzy reliability index profile can be considered in LIFETIME. Numerical examples of deteriorating bridges are presented to illustrate the capability of the proposed approach. Further development and implementation of this approach are recommended for future research.

  • PDF

Development and Performance Testing of a Time-resolved OSL Measurement System

  • Hong, Duk-Geun;Kim, Myung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Background: Time-resolved optically stimulated luminescence (TR-OSL) is a very useful method for calculating the lifetimes of crystalline quartz and feldspar. Materials and Methods: A compact TR-OSL system was developed, comprising a heater assembly manufactured using Kanthal wire, 2 powerful blue light-emitting diodes (LED, LXHL-PB02) for optical stimulation equipped with VIS liquid light guides, and a photomultiplier tube combined with an optical filter for luminescence detection. A pulse generated from the data acquisition board (NI PCI 6250) was used to initiate on/off signals in LED and TR-OSL measurements. Results and Discussion: The TR-OSL and background signals measured using this TR-OSL system using quartz samples were very similar to those reported in a previous study. Additionally, the lifetimes of the build-up and TR-OSL signals were calculated as $27.4{\pm}2.2{\mu}s$ and $30.3{\pm}0.6{\mu}s$, respectively, in good agreement with the findings of a previous study. Conclusion: It was concluded that the developed TR-OSL system was very reliable for TR-OSL signal measurements and lifetime calculations.

Dynamic Data Distribution for Multi-dimensional Range Queries in Data-Centric Sensor Networks (데이타 기반 센서 네트워크에서 다차원 영역 질의를 위한 동적 데이타 분산)

  • Lim, Yong-Hun;Chung, Yon-Dohn;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.32-41
    • /
    • 2006
  • In data-centric networks, various data items, such as temperature, humidity, etc. are sensed and stored in sensor nodes. As these attributes are mostly scalar values and inter-related, multi-dimensional range queries are useful. To process multi-dimensional range queries efficiently in data-centric storage, data addressing is essential. The Previous work focused on efficient query processing without considering overall network lifetime. To prolong network lifetime and support multi-dimensional range queries, we propose a dynamic data distribution method for multi-dimensional data, where data space is divided into equal-sized regions and linearized by using Hilbert space filling curve.

Study of Optimal Conditions Affecting the Photothermal Effect and Fluorescence Characteristics of Indocyanine Green

  • Seo, Sung Hoon;Bae, Min Gyu;Park, Hyeong Ju;Ahn, Jae Sung;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.554-561
    • /
    • 2021
  • Indocyanine green (ICG) is a cyanine dye that has been used in medical diagnostics based on fluorescence imaging, and in medical therapy based on the photothermal effect. It is important to systematically understand the photothermal effect and fluorescence characteristics of ICG simultaneously. By varying a number of conditions such as laser power density, laser irradiation wavelength, concentration of ICG solution, and exposure time of laser irradiation, the intensity properties of fluorescence and the temperature change induced by the photothermal effect are measured simultaneously using a charge-coupled-device camera and a thermal-imaging camera. The optimal conditions for maximizing the photothermal effect are determined, while maintaining a relatively long lifetime and high efficiency of the fluorescence for fluorescence imaging. When the concentration of ICG is approximately 50 ㎍/ml and the laser power density exceeds 1.5 W/cm2, the fluorescence lifetime is the longest and the temperature induced by the photothermal effect rapidly increases, exceeding the critical temperature sufficient to damage human cells and tissues. The findings provide useful insight into the realization of effective photothermal therapy, while also specifying the site to be treated and enabling real-time treatment monitoring.