Park, Chanjun;Seo, Jaehyung;Lee, Seolhwa;Moon, Hyeonseok;Eo, Sugyeong;Lim, Heuiseok
Journal of the Korea Convergence Society
/
v.12
no.11
/
pp.109-117
/
2021
Recently, the use of speech-based interfaces is increasing as a means for human-computer interaction (HCI). Accordingly, interest in post-processors for correcting errors in speech recognition results is also increasing. However, a lot of human-labor is required for data construction. in order to manufacture a sequence to sequence (S2S) based speech recognition post-processor. To this end, to alleviate the limitations of the existing construction methodology, a new data construction method called Back TranScription (BTS) was proposed. BTS refers to a technology that combines TTS and STT technology to create a pseudo parallel corpus. This methodology eliminates the role of a phonetic transcriptor and can automatically generate vast amounts of training data, saving the cost. This paper verified through experiments that data should be constructed in consideration of text style and domain rather than constructing data without any criteria by extending the existing BTS research.
Journal of Korea Entertainment Industry Association
/
v.15
no.3
/
pp.203-210
/
2021
Yuri Vasilyev - actor, director and drama teacher. Russian meritorious artist, winner of the stage "Medal of Friendship" awarded by Russian President Vladimir Putin; academician of the Petrovsky Academy of Sciences and Arts in Russia, professor of the Russian National Academy of Performing Arts, and professor of the Bavarian Academy of Drama in Munich, Germany. The physiological sense stimulation method based on the improvement of voice, language and motor function of drama actors. On the basis of a systematic understanding of performing arts, Yuri Vasiliev created a unique training method of speech expression and skills. From the complicated art training, we find out the most critical skills for focused training, which we call basic skills training. Throughout the whole training process, Professor Yuri made a clear request for the actor's lines: "action! This is the basis of actors' creation. So action is the key! Action and voice are closely linked. Actor's voice is human voice, human life, human feeling, human experience and disaster. It is also the foundation of creation that actors acquire their own voice. What we are engaged in is pronunciation, breathing, tone and intonation, speed and rhythm, expressiveness, sincerity, stage voice and movement, gesture, all of which are used to train the voice of actors according to the standard of drama. In short, Professor Yuri's training course is not only the training of stage performance and skills, but also contains a rich view of drama and performance. I think, in addition to learning from the means and methods of training, it is more important for us to understand the starting point and training objectives of Professor Yuri's use of these exercises.
In this study, we introduced the case of college calculus course for vocational high school graduates with coding. We suggest this case as an alternative to overcome mathematics anxiety. Contents, python/SageMath codes, and textbook for this course, which help students to easily and quickly review middle and high school mathematics, were newly developed by authors. Due to the use of codes and chat with classmates in learning management system, most of the students who took this course reported that they no longer felt anxious in complex mathematics problems, had a full understanding of calculus concepts, could solve almost problems in any calculus textbooks with or without codes, and could explain calculus concepts to other students in their own words. In this way if mathematics and coding is properly used in mathematics education, it helps students with weak mathematical backgrounds or mathematics anxiety to restore confidence in mathematics in college. This could be applicable in secondary mathematics education.
Korean Journal of Construction Engineering and Management
/
v.23
no.3
/
pp.45-55
/
2022
BIM models allow building spaces to be instantiated and recognized as unique objects independently of model elements. These instantiated spaces provide the required semantics that can be leveraged for building code checking, energy analysis, and evacuation route analysis. However, theses spaces or rooms need to be designated manually, which in practice, lead to errors and omissions. Thus, most BIM models today does not guarantee the semantic integrity of space designations, limiting their potential applicability. Recent studies have explored ways to automate space allocation in BIM models using artificial intelligence algorithms, but they are limited in their scope and relatively low classification accuracy. This study explored the use of Graph Convolutional Networks, an algorithm exclusively tailored for graph data structures. The goal was to utilize not only geometry information but also the semantic relational data between spaces and elements in the BIM model. Results of the study confirmed that the accuracy was improved by about 8% compared to algorithms that only used geometric distinctions of the individual spaces.
This paper aims to derive success factors that successfully lead an artificial intelligence (AI) project and prioritize importance. To this end, we first reviewed prior related studies to select success factors and finally derived 17 factors through expert interviews. Then, we developed a hierarchical model based on the TOE framework. With a hierarchical model, a survey was conducted on experts from AI-using companies and experts from supplier companies that support AI advice and technologies, platforms, and applications and analyzed using AHP methods. As a result of the analysis, organizational and technical factors are more important than environmental factors, but organizational factors are a little more critical. Among the organizational factors, strategic/clear business needs, AI implementation/utilization capabilities, and collaboration/communication between departments were the most important. Among the technical factors, sufficient amount and quality of data for AI learning were derived as the most important factors, followed by IT infrastructure/compatibility. Regarding environmental factors, customer preparation and support for the direct use of AI were essential. Looking at the importance of each 17 individual factors, data availability and quality (0.2245) were the most important, followed by strategy/clear business needs (0.1076) and customer readiness/support (0.0763). These results can guide successful implementation and development for companies considering or implementing AI adoption, service providers supporting AI adoption, and government policymakers seeking to foster the AI industry. In addition, they are expected to contribute to researchers who aim to study AI success models.
Journal of Korea Entertainment Industry Association
/
v.13
no.4
/
pp.139-147
/
2019
This study conducted bibliometric analysis on studies of Korean intangible cultural heritage dance in the Seoul area and it aimed to figure out the tendencies of that research. For this, a list of Korean intangible cultural heritage dance studies of 24 events was collected and analysis was conducted through the big data analysis solution of TEXTOM. Text mining was used as the method for analysis. Research results showed that first, most of the studies were conducted on the Bongsan Talchum and studies on teaching and learning methods were especially actively conducted. On the other hand, there were not many studies on Gut and the need for research vitalization in that area was confirmed. Second, in studies on Cheoyongmu events, the term'contemporary Cheoyongmu' was used frequently. This can be considered the use of meaningful terms with regard to intangible cultural heritage dance that has changed throughout history. At this, the vitalization of research that can reveal the typicality of dance is demanded from research of other events as well. Third, there was a notable amount of research that compared and analyzed dance styles with regard to the Munmyoilmu. This was seen as the result of discussions in the Korean dancing world regarding archetypal dance styles expanding into academic discussions. Therefore, it was revealed that academic discussions can connect to academic outcomes apart from whether the matter is right or wrong.
Market instability offers opportunities as well as the need for careful innovation strategies and learning for a company's survival. Companies that find new opportunities decide to carry out innovation and decide on the size of their investments by considering their position in the market they are aiming for and the intensity of competition. This study was conducted to check whether obstacles to innovation face by SMEs in the manufacturing sector vary depending on the stage of corporate growth and to identify the impact of the government support system on the decision-making process on the performance of innovation. According to the analysis, there were differences in obstacles to innovation depending on the stage of corporate growth. It was found that more innovative SMEs are, more obstacles they face, and to overcome such obstacles, they try to access government support systems more. In addition, the use of a government support system eliminated obstacles to innovation, and the positive and significant effects of investing in innovation were identified. This study is meaningful in that it explicitly approached these hypotheses by applying a multistage model to the process of innovation carried out by SMEs in the manufacturing sector.
One of the main factors that determine the quality of instruction is the teaching ability of the instructor administering the class. To evaluate teaching ability, methods such as peer review, student feedback, and teaching portfolio can be used. Among these, because feedback from the students is directly associated with how well the students feel they have learned, it is essential to improving instruction and teaching ability. The principal aim of instruction evaluation lies in the evaluation of instructor's qualification and the improvement of instruction quality by enhancing professionalism. However, the mandatory instruction evaluations currently being carried out at the term's end in universities today have limitations in improving instruction in terms of its evaluation items and times. To improve the quality of instruction and raise teaching abilities, instruction evaluations should not stop at simply being carried out but also be utilized as useful data for students and teachers. In other words, they need to be used to develop teaching and improve instruction for teachers, and consequently, should also exert a positive influence on students' scholastic achievements and learning ability. The most important thing in evaluation is the acquisition of accurate information and how to utilize it to improve instruction. The online instruction diagnosis item pool is a more realistic feedback device developed to improve instruction quality. The instruction diagnosis item pool is a cafeteria-like collection of hundreds of feedback questions provided to enable instructors to diagnose their instruction through self-diagnosis or students' feedback, and the instructors can directly select the questions that are appropriate to the special characteristics of their instruction voluntarily make use of them whenever they are needed. The current study, in order to find out if the online instruction diagnosis item pool is truly useful in reforming and improving instruction, conducted pre and post tests using 256 undergraduate students from Y university as subjects, and studied the effects of student feedback on instructions. Results showed that the implementation of instruction diagnosis improved students' responsibility regarding their classes, and students had positive opinions regarding the usefulness of online instruction diagnosis item pool in instruction evaluation. Also, after instruction diagnosis, analyzing the results through consultations with education development specialists, and then establishing and carrying out instruction reforms were shown to be more effective. In order to utilize the instruction diagnostic system more effectively, from planning the execution of instruction diagnosis to analyzing the results, consulting, and deciding how those results could be utilized to instruction, a systematic strategy is needed. In addition, professors and students need to develop a more active sense of ownership in order to elevate the level of their instruction.
The main purpose of this study was to use Deep Learning based Topic Modeling and Semantic Network Analysis to examine research trend of arts management-related papers in korea. For this purpose, research subjects such as 'The Journal of Cultural Policy', 'The Journal of Cultural Economics', 'The Journal of Culture Industry', 'The Journal of Arts Management', and 'The Journal of Human Content', which are the registered journal of the National Research Foundation of Korea directly or indirectly related to arts management field. From 1988 to 2017, a total of 2,110 domestic journals' signature, abstract, and keyword were analyzed. We tried Big Data analysis such as Topic Modeling and Semantic Network Analysis to examine changes in trends in arts management. The analysis program used open software R and standard statistical software SPSS. Based on the results of the analysis, the implications and limitations of the study and suggestions for future research were discussed. And the potential for development of convergent research such as Arts & Artificial Intelligence and Arts & Big Data.
In various manufacturing processes such as textiles and automobiles, when equipment breaks down or stops, the machines do not work, which leads to time and financial losses for the company. Therefore, it is important to detect equipment abnormalities in advance so that equipment failures can be predicted and repaired before they occur. Most equipment failures are caused by bearing failures, which are essential parts of equipment, and detection bearing anomaly is the essence of PHM(Prognostics and Health Management) research. In this paper, we propose a preprocessing algorithm called SWT-SVD, which analyzes vibration signals from bearings and apply it to an anomaly transformer, one of the time series anomaly detection model networks, to implement bearing anomaly detection model. Vibration signals from the bearing manufacturing process contain noise due to the real-time generation of sensor values. To reduce noise in vibration signals, we use the Stationary Wavelet Transform to extract frequency components and perform preprocessing to extract meaningful features through the Singular Value Decomposition algorithm. For experimental validation of the proposed SWT-SVD preprocessing method in the bearing anomaly detection model, we utilize the PHM-2012-Challenge dataset provided by the IEEE PHM Conference. The experimental results demonstrate significant performance with an accuracy of 0.98 and an F1-Score of 0.97. Additionally, to substantiate performance improvement, we conduct a comparative analysis with previous studies, confirming that the proposed preprocessing method outperforms previous preprocessing methods in terms of performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.