• Title/Summary/Keyword: use for learning

Search Result 4,737, Processing Time 0.031 seconds

Image Retrieval: Access and Use in Information Overload (이미지 검색: 정보과다 환경에서의 접근과 이용)

  • Park, Minsoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.703-708
    • /
    • 2022
  • Tables and figures in academic literature contain important and valuable information. Tables and figures represent the essence of the refined study, which is the closest to the raw dataset. If so, can researchers easily access and utilize these image data through the search system? In this study, we try to identify user perceptions and needs for image data through user and case studies. Through this study we also explore expected effects and utilizations of image search systems. It was found that the majority of researchers prefer a system that combines table and figure indexing functions with traditional search functions. They valued the provision of an advanced search function that would allow them to limit their searches to specific object types (pictures and tables). Overall, researchers discovered many potential uses of the system for indexing tables and figures. It has been shown to be helpful in finding special types of information for teaching, presentation, research and learning. It should be also noticed that the usefulness of these systems is highest when features are integrated into existing systems, seamlessly link to fulltexts, and include high-quality images with full captions. Expected effects and utilizations for user-centered image search systems are also discussed.

Comparative study of data augmentation methods for fake audio detection (음성위조 탐지에 있어서 데이터 증강 기법의 성능에 관한 비교 연구)

  • KwanYeol Park;Il-Youp Kwak
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.101-114
    • /
    • 2023
  • The data augmentation technique is effectively used to solve the problem of overfitting the model by allowing the training dataset to be viewed from various perspectives. In addition to image augmentation techniques such as rotation, cropping, horizontal flip, and vertical flip, occlusion-based data augmentation methods such as Cutmix and Cutout have been proposed. For models based on speech data, it is possible to use an occlusion-based data-based augmentation technique after converting a 1D speech signal into a 2D spectrogram. In particular, SpecAugment is an occlusion-based augmentation technique for speech spectrograms. In this study, we intend to compare and study data augmentation techniques that can be used in the problem of false-voice detection. Using data from the ASVspoof2017 and ASVspoof2019 competitions held to detect fake audio, a dataset applied with Cutout, Cutmix, and SpecAugment, an occlusion-based data augmentation method, was trained through an LCNN model. All three augmentation techniques, Cutout, Cutmix, and SpecAugment, generally improved the performance of the model. In ASVspoof2017, Cutmix, in ASVspoof2019 LA, Mixup, and in ASVspoof2019 PA, SpecAugment showed the best performance. In addition, increasing the number of masks for SpecAugment helps to improve performance. In conclusion, it is understood that the appropriate augmentation technique differs depending on the situation and data.

A Comparative Study on Discrimination Issues in Large Language Models (거대언어모델의 차별문제 비교 연구)

  • Wei Li;Kyunghwa Hwang;Jiae Choi;Ohbyung Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.125-144
    • /
    • 2023
  • Recently, the use of Large Language Models (LLMs) such as ChatGPT has been increasing in various fields such as interactive commerce and mobile financial services. However, LMMs, which are mainly created by learning existing documents, can also learn various human biases inherent in documents. Nevertheless, there have been few comparative studies on the aspects of bias and discrimination in LLMs. The purpose of this study is to examine the existence and extent of nine types of discrimination (Age, Disability status, Gender identity, Nationality, Physical appearance, Race ethnicity, Religion, Socio-economic status, Sexual orientation) in LLMs and suggest ways to improve them. For this purpose, we utilized BBQ (Bias Benchmark for QA), a tool for identifying discrimination, to compare three large-scale language models including ChatGPT, GPT-3, and Bing Chat. As a result of the evaluation, a large number of discriminatory responses were observed in the mega-language models, and the patterns differed depending on the mega-language model. In particular, problems were exposed in elder discrimination and disability discrimination, which are not traditional AI ethics issues such as sexism, racism, and economic inequality, and a new perspective on AI ethics was found. Based on the results of the comparison, this paper describes how to improve and develop large-scale language models in the future.

Study of Smart Integration processing Systems for Sensor Data (센서 데이터를 위한 스마트 통합 처리 시스템 연구)

  • Ji, Hyo-Sang;Kim, Jae-Sung;Kim, Ri-Won;Kim, Jeong-Joon;Han, Ik-Joo;Park, Jeong-Min
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.8
    • /
    • pp.327-342
    • /
    • 2017
  • In this paper, we introduce an integrated processing system of smart sensor data for IoT service which collects sensor data and efficiently processes it. Based on the technology of collecting sensor data to the development of the IoT field and sending it to the network · Based on the receiving technology, as various projects such as smart homes, autonomous running vehicles progress, the sensor data is processed and effectively An autonomous control system to utilize has been a problem. However, since the data type of the sensor for monitoring the autonomous control system varies according to the domain, a sensor data integration processing system applying the autonomous control system to various different domains is necessary. Therefore, in this paper, we introduce the Smart Sensor Data Integrated Processing System, apply it and use the window as a reference to process internal and external sensor data 1) receiveData, 2) parseData, 3) addToDatabase 3 With the process of the stage, we provide and implement the automatic window opening / closing system "Smart Window" which ventilates to create a comfortable indoor environment by autonomous control system. As a result, standby information is collected and monitored, and machine learning for performing statistical analysis and better autonomous control based on the stored data is made possible.

Development of Instructional Model for Activation of K-MOOC: Based on Metaverse (K-MOOC 활성화를 위한 교수법 수업모형 개발 : 메타버스를 중심으로)

  • Dongyeon Choi
    • Journal of Christian Education in Korea
    • /
    • v.74
    • /
    • pp.273-294
    • /
    • 2023
  • The purpose of this study is to use K-MOOC, which has limitations in utilization because it is centered on theory delivery, to derive tasks to activate the teaching methods of instructors, and to implement the derived tasks using the metaverse platform. to develop a prototype. According to the purpose of the study, the study was conducted as follows. First, from October 4 to November 15, 2022, a Delphi survey was conducted on 21 experts with experience of consulting, research, class development, and operation related to the K-MOOC project. Second, in order to realize the tasks in the teaching method field derived from the Delphi survey, matching with the teaching method class model elements to result of Delphi survey was applied was carried out. Finally, based on the results of expert Delphi and the elements of the class model applicable to the metaverse platform, a teaching method was developed. Through the process of the study, a total of 16 detailed items were derived for the teaching method-related tasks for the activation of K-MOOC: support strategic tasks, teaching method competency, aspect of class design, evaluation and sharing of learning outcomes. By applying the metaverse, the teaching model elements for K-MOOC revitalization were derived from four categories: self-directed repetition, individualized problem solving, practice opportunity expansion, and immediate feedback, and matched with the first 16 detailed items. A four-step teaching model was completed: course attendance (step 1), mission analysis by individual level (step 2), sharing of mission solutions (step 3), and mission evaluation and feedback (step 4). Through the results of this study, the possibility of using the metaverse as a teaching practice platform was confirmed even in terms of the introduction and development of specialized techniques.

A study on end-to-end speaker diarization system using single-label classification (단일 레이블 분류를 이용한 종단 간 화자 분할 시스템 성능 향상에 관한 연구)

  • Jaehee Jung;Wooil Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.536-543
    • /
    • 2023
  • Speaker diarization, which labels for "who spoken when?" in speech with multiple speakers, has been studied on a deep neural network-based end-to-end method for labeling on speech overlap and optimization of speaker diarization models. Most deep neural network-based end-to-end speaker diarization systems perform multi-label classification problem that predicts the labels of all speakers spoken in each frame of speech. However, the performance of the multi-label-based model varies greatly depending on what the threshold is set to. In this paper, it is studied a speaker diarization system using single-label classification so that speaker diarization can be performed without thresholds. The proposed model estimate labels from the output of the model by converting speaker labels into a single label. To consider speaker label permutations in the training, the proposed model is used a combination of Permutation Invariant Training (PIT) loss and cross-entropy loss. In addition, how to add the residual connection structures to model is studied for effective learning of speaker diarization models with deep structures. The experiment used the Librispech database to generate and use simulated noise data for two speakers. When compared with the proposed method and baseline model using the Diarization Error Rate (DER) performance the proposed method can be labeling without threshold, and it has improved performance by about 20.7 %.

An Exploratory Study on ChatGPT's Performance to Answer to Police-related Traffic Laws: Using the Driver's License Test and the Road Traffic Accident Appraiser (ChatGPT의 경찰 관련 교통법규 응답 능력에 대한 탐색적 연구 - 운전면허 학과시험과 도로교통사고감정사 1차 시험을 대상으로 -)

  • Sang-yub Lee
    • Journal of Digital Policy
    • /
    • v.2 no.4
    • /
    • pp.1-10
    • /
    • 2023
  • This study conducted preliminary study to identify effective ways to use ChatGPT in traffic policing by analyzing ChatGPT's responses to the driver's license test and the road traffic accident appraiser test. I collected ChatGPT responses for the driver's license test item pool and the road traffic accident appraiser test using the OpenAI API with Python code for 30 iterative experiments, and analyzed the percentage of correct answers by test, year, section, and consistency. First, the average correct answer rate for the driver's license test and the for road traffic accident appraisers test was 44.60% and 35.45%, respectively, which was lower than the pass criteria, and the correct answer rate after 2022 was lower than the average correct answer rate. Second, the percentage of correct answers by section ranged from 29.69% to 56.80%, showing a significant difference. Third, it consistently produced the same response more than 95% of the time when the answer was correct. To effectively utilize ChatGPT, it is necessary to have user expertise, evaluation data and analysis methods, design a quality traffic law corpus and periodic learning.

An Exploratory Study on the Strategic Responses to ESG Evaluation of SMEs (중소기업의 ESG평가에 대한 전략적 대응방안 탐색적 연구)

  • Park, Yoon Su
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.47-65
    • /
    • 2023
  • As stakeholder demands and sustainable finance grow, ESG management and ESG evaluation are becoming important. SMEs should also prepare for the trends of ESG rating practices that affects supply chain management and financial transactions. However, SMEs have no choice but to focus on survival first, so there are restrictions on putting into ESG management. In addition, there is a lack of research on the legitimacy of ESG management by SMEs, and volatility in ESG evaluation systems and rating grades is also increasing. Accordingly, it is necessary to review ESG evaluation trends and practical guidelines along with the review of previous studies. As a result of the exploratory study, SMEs need to implement ESG management and make efforts to specialize in ESG related new businesses under conditions in which their survival base is guaranteed in terms of implementation strategies. In addition, it is necessary to focus on the strategic use of various evaluation results along with accumulating information favorable for ESG evaluation through organizational learning and software management. The implications of this study are that various studies such as the classification criteria for SMEs and the relationship between ESG evaluation grades and long-term survival rates are needed in ESG evaluation of SMEs. At the government policy level, it is time to consider the ESG evaluation system exclusively for SMEs so that ESG management can be implemented and ESG evaluation at different levels by industry and size.

  • PDF

A Case Study of Middle School Students' Abductive Inference during a Geological Field Excursion (야외 지질 학습에서 나타난 중학생들의 귀추적 추론 사례 연구)

  • Maeng, Seung-Ho;Park, Myeong-Sook;Lee, Jeong-A;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.9
    • /
    • pp.818-831
    • /
    • 2007
  • Recognizing the importance of abductive inquiry in Earth science, some theoretical approaches that deploy abduction have been researched. And, it is necessary that the abductive inquiry in a geological field excursion as a vivid locale of Earth science inquiry should be researched. We developed a geological field trip based on the abductive learning model, and investigated students' abductive inference, thinking strategies used in those inferences, and the impact of a teacher's pedagogical intervention on students' abductive inference. Results showed that students, during the field excursion, could accomplish abductive inference about rock identification, process of different rock generation, joints generation in metamorpa?ic rocks, and terrains at the field trip area. They also used various thinking strategies in finding appropriate rules to construe the facts observed at outcrops. This means that it is significant for the enhancement of abductive reasoning skills that students experience such inquiries as scientists do. In addition, a teacher's pedagogical interventions didn't ensure the content of students' inference while they helped students perform abductive reasoning and guided their use of specific thinking strategies. Students had found reasoning rules to explain the 01: served facts from their wrong prior knowledge. Therefore, during a geological field excursion, teachers need to provide students with proper background knowledge and information in order that students can reason rues for persuasive abductive inference, and construe the geological features of the field trip area by the establishment of appropriate hypotheses.

A Study on A Study on the University Education Plan Using ChatGPTfor University Students (ChatGPT를 활용한 대학 교육 방안 연구)

  • Hyun-ju Kim;Jinyoung Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • ChatGPT, an interactive artificial intelligence (AI) chatbot developed by Open AI in the U.S., gaining popularity with great repercussions around the world. Some academia are concerned that ChatGPT can be used by students for plagiarism, but ChatGPT is also widely used in a positive direction, such as being used to write marketing phrases or website phrases. There is also an opinion that ChatGPT could be a new future for "search," and some analysts say that the focus should be on fostering rather than excessive regulation. This study analyzed consciousness about ChatGPT for college students through a survey of their perception of ChatGPT. And, plagiarism inspection systems were prepared to establish an education support model using ChatGPT and ChatGPT. Based on this, a university education support model using ChatGPT was constructed. The education model using ChatGPT established an education model based on text, digital, and art, and then composed of detailed strategies necessary for the era of the 4th industrial revolution below it. In addition, it was configured to guide students to use ChatGPT within the permitted range by using the ChatGPT detection function provided by the plagiarism inspection system, after the instructor of the class determined the allowable range of content generated by ChatGPT according to the learning goal. By linking and utilizing ChatGPT and the plagiarism inspection system in this way, it is expected to prevent situations in which ChatGPT's excellent ability is abused in education.