Journal of the Korea Society of Computer and Information
/
v.16
no.5
/
pp.135-145
/
2011
These days, the research of a sensor data management system for USN based real-time monitoring application is active thanks to the development and diffusion of sensor technology. The sensor data is rapidly changeable, continuous and massive row level data. However, end user is only interested in high level data. So, it is essential to effectively process the row level data which is changeable, continuous and massive. In this paper, we propose a sensor data management system with multi-analytical query function using OLAP and anomaly detection function using learning based classifier. In the experimental section, we show that our system is valid through the some experimental scenarios. For the this, we use a sensor data generator implemented by ourselves.
With big data analysis, companies use the customized marketing strategy based on customer's information. However, because of the concerns about privacy issue and identity theft, people start erasing their personal information or changing the privacy settings on social network site. Facebook, the most used social networking site, has the feature called 'Likes' which can be used as a tool to predict user's demographic profiles, such as sex and age range. To make accurate analysis model for the study, 'Likes' data has been processed by using Gaussian RBF and nFactors for dimensionality reduction. With random Forest and 5-fold cross-validation, the result shows that sex has 75% and age has 97.85% accuracy rate. From this study, we expect to provide an useful guideline for companies and marketers who are suffering to collect customers' data.
Journal of the Korea Fashion and Costume Design Association
/
v.16
no.4
/
pp.79-98
/
2014
As men are interested in fashion and beauty and invest for himselves nowadays, the scale of men's cosmetic businesses is showing steadily tendency. The purposes of this were to offer data to establish a marketing strategies learning follows: The findings of this study were as follows: First, according to the survey on men's consideration of their look, it showed their high interest in it. 29% respondents carry cosmetics in their hands normally. Second, Men's level of skin management knowledge is quite high according the survey. Third, The largest group of respondents are obtaining information about cosmetics through mass media. therefore, there will be necessity for cosmetic firms to aggressively pursue positive publicity strategy various of mass media. Fourth, Regarding purchasing behavior, 53.2% buy cosmetics in person, who outnumbered the others who don't. In the case of men who don't buy cosmetics by themselves, spouses or girl friends purchase cosmetics on behalf of them. Fifth, as a result of examine the demand level for men's cosmetics, the men, who answered that it is appropriate a lotion and toner is priced between 10,000 won and 30,000 won were the largest with 51.1%. Men who answered that beside the basic cosmetics such as toner and lotion that use, they will purchase sunscreen in the future. Men sho recognize the most important task needed to be improved in men's cosmetics is higher quality, with 25.9%.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.6
/
pp.1327-1337
/
2019
With the growth of the IoT market, malware security threats are steadily increasing for devices that use the linux architecture. However, except for the major malware causing serious security damage such as Mirai, there is no related technology or research of security community about linux malware. In addition, the diversity of devices, vendors, and architectures in the IoT environment is further intensifying, and the difficulty in handling linux malware is also increasing. Therefore, in this paper, we propose an analysis system based on ELF which is the main format of linux architecture, and a binary based analysis system considering IoT environment. The ELF-based analysis system can be pre-classified for a large number of malicious codes at a relatively high speed and a relatively low-speed binary-based analysis system can classify all the data that are not preprocessed. These two processes are supposed to complement each other and effectively classify linux-based malware.
A simple stereo matching algorithm using population-based incremental learning(PBIL) is proposed in this paper to decrease the general problem of genetic algorithms, such as memory consumption and inefficiency of search. PBIL is a variation of genetic algorithms using stochastic search and competitive teaming based on a probability vector. The structure of PBIL is simpler than that of other genetic algorithm families, such as serial and parallel ones, due to the use of a probability vector. The PBIL strategy is simplified and adapted for stereo matching circumstances. Thus, gene pool, chromosome crossover, and gene mutation we removed, while the evolution rule, that fitter chromosomes should have higher survival probabilities, is preserved. As a result, memory space is decreased, matching rules are simplified and computation cost is reduced. In addition, a scheme controlling the distance of neighbors for disparity smoothness is inserted to obtain a wide-area consistency of disparities, like a result of coarse-to-fine matchers. Because of this scheme, the proposed algorithm can produce a stable disparity map with a small fixed-size window. Finally, an alterative version of the proposed algorithm without using probability vector is also presented for simpler set-ups.
The purpose of this study is to understand the characteristics of mathematical discourse about the length in the class that learns the length of the curve defined by definite integral. For this purpose, this study examined the discourse about length by paying attention to the usage of the word 'length' in the class participants based on the communicative approach. As a result of the research, it was confirmed that the word 'length' is used in three usages - colloquial, operational, and structural usage - in the process of communicating with the discourse participants. Particularly, each participant did not recognize the difference even though they used different usage words, and this resulted in ineffective communication. This study emphasizes the fact that the difference in usage of words used by participants reduces the effectiveness of communication. However, if discourse participants pay attention to the differences of these usages and recognize that there are different discourses, this study suggests that meta - level learning can be possible by overcoming communication discontinuities and resolving conflicts.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.514-517
/
2017
In solar photovoltaic systems, power generation is greatly affected by the weather conditions, so it is essential to predict solar energy for stable load operation. Therefore, data on weather conditions are needed as inputs to machine learning algorithms for solar energy prediction. In this paper, we use 15 kinds of weather data such as the precipitation accumulated during the 3 hours of the surface, upward and downward longwave radiation average, upward and downward shortwave radiation average, the temperature during the past 3 hours at 2 m above from the ground and temperature from the ground surface as input data to the algorithm. We analyzed the statistical characteristics and correlations of weather data and extracted the downward and upward shortwave radiation averages as a major elements of a feature vector with high correlation of 70% or more with solar energy.
This study is about classical music lovers who write a lengthy concert review on instagram. The intention and objective of writing a review is discussed in addition to inter-communication between those reviewers. For the analysis, an interview with 8 reviewers are mainly analyzed with their reviews. As a result, it is found that some affordances of Instagram, easiness, randomness, and friendliness affects them to use Instagram more than other social media. Hence, since Instagram is image-based platform, it helps writers to keep their reviews from getting an attention by other users. Because of their sense of inferiority that they are lacking in classical music knowledge, continuous writing and reading of reviews help them accumulating some amount of cultural capital needed for understanding classical music in a proper way.
Journal of the Korea Society of Computer and Information
/
v.20
no.8
/
pp.121-128
/
2015
This study aimed to investigate the effects of an unplugged robot education system capable of computerless coding education. Specifically, this study compared this education system with PicoCricket, an educational robot that can also be used with elementary students in lower grades, using assessment tools on perceived usefulness and ease. Using random sampling and randomized assignment for more objective validation, 30 participants were assigned to the unplugged robot education system group (experimental group) and 30 participants were assigned to the PicoCricket group (control group), for a total of 60 study participants. The research procedure included verification of the equivalence of the two groups by conducting a pretest after a 2-hour basic training session on algorithms and programming. The experimental and control groups learned the same content using different educational tools in accordance with software training guidelines for a total of 12 hours. Then, the difference in perceived usefulness and ease between the two groups was examined using a post-treatment test. The study results showed that scores on both dependent variables, perceived usefulness and perceived ease, were significantly higher in the experimental group than the control group. Moreover, scores on all sub-variables of the dependent variables were significantly higher in the experimental group than the control group. These results suggest that learners using the unplugged robot education system found it more useful and easier to use than learners using the existing educational robot, PicoCricket. This study's findings are significant, as according to the technology acceptance model, the perceived usefulness and ease of an educational tool are important variables that determine the acceptance of the tool (i.e., persistence of learning).
Purpose: To explore the effects of action observation combined with modified constraint-induced movement therapy on upper-extremity function and the activities of daily living in subacute stroke patients. Methods: Twenty-four subacute stroke patients were randomly assigned to the experimental group or the control group (n = 12 each). Both groups received therapy based on motor learning concepts, including repetitive and task-specific practice. The experimental group watched video clips for 10 minutes related to tasks performed during modified constraint-induced movement therapy while the control group watched videos unrelated to upper-extremity movement. These programs were performed for 40 minutes a day five times a week for four weeks. Their scores on the Fugl-Meyer assessment of upper extremities (FMA-UE), the action research arm test (ARAT), a motor activity log (amount of use [AOU] and quality of movement [QOM]), and the modified Barthel index (MBI) were recorded. Results: In both groups, all variables were significantly different between the pre-test and post-test periods (p < 0.05). The post-test variables were significantly different within each group (p < 0.05). In the experimental group, the changes between pre-test and post-test scores in the FMA-UE (14.39 ± 4.31 versus 6.31 ± 4.63), the ARAT (16.00 ± 4.73 versus 11.46 ± 3.73), MAL-AOU (1.57 ± 0.15 versus 1.18 ± 0.28), and MBI (27.54 ± 4.65 versus 18.08 ± 8.52) were significantly higher than those of the control group (p < 0.05). Conclusion: These findings suggest that action observation combined with modified constraint-induced movement therapy may be a beneficial rehabilitation option to improve upper-extremity function in subacute stroke patients with moderate impairment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.