• Title/Summary/Keyword: use for learning

Search Result 4,739, Processing Time 0.037 seconds

Analysis of Activation Energy of Thermal Aging Embrittlement in Cast Austenite Stainless Steels (주조 오스테나이트 스테인리스강의 열취화 활성화에너지 분석)

  • Gyeong-Geun Lee;Suk-Min Hong;Ji-Su Kim;Dong-Hyun Ahn;Jong-Min Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.56-65
    • /
    • 2024
  • Cast austenitic stainless steels (CASS) and austenitic stainless steel weldments with a ferrite-austenite duplex structure are widely used in nuclear power plants, incorporating ferrite phase to enhance strength, stress relief, and corrosion resistance. Thermal aging at 290-325℃ can induce embrittlement, primarily due to spinodal decomposition and G-phase precipitation in the ferrite phase. This study evaluates the effects of thermal aging by collecting and analyzing various mechanical properties, such as Charpy impact energy, ferrite microhardness, and tensile strength, from various literature sources. Different model expressions, including hyperbolic tangent and phase transformation equations, are applied to calculate activation energy (Q) of room-temperature impact energies, and the results are compared. Additionally, predictive models for Q based on material composition are evaluated, and the potential of machine learning techniques for improving prediction accuracy is explored. The study also examines the use of ferrite microhardness and tensile strength in calculating Q and assessing thermal embrittlement. The findings provide insights for developing advanced prediction models for the thermal embrittlement behavior of CASS and the weldments of austenitic steels, contributing to the safety and reliability of nuclear power plant components.

Reporting Quality of Research Studies on AI Applications in Medical Images According to the CLAIM Guidelines in a Radiology Journal With a Strong Prominence in Asia

  • Dong Yeong Kim;Hyun Woo Oh;Chong Hyun Suh
    • Korean Journal of Radiology
    • /
    • v.24 no.12
    • /
    • pp.1179-1189
    • /
    • 2023
  • Objective: We aimed to evaluate the reporting quality of research articles that applied deep learning to medical imaging. Using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines and a journal with prominence in Asia as a sample, we intended to provide an insight into reporting quality in the Asian region and establish a journal-specific audit. Materials and Methods: A total of 38 articles published in the Korean Journal of Radiology between June 2018 and January 2023 were analyzed. The analysis included calculating the percentage of studies that adhered to each CLAIM item and identifying items that were met by ≤ 50% of the studies. The article review was initially conducted independently by two reviewers, and the consensus results were used for the final analysis. We also compared adherence rates to CLAIM before and after December 2020. Results: Of the 42 items in the CLAIM guidelines, 12 items (29%) were satisfied by ≤ 50% of the included articles. None of the studies reported handling missing data (item #13). Only one study respectively presented the use of de-identification methods (#12), intended sample size (#19), robustness or sensitivity analysis (#30), and full study protocol (#41). Of the studies, 35% reported the selection of data subsets (#10), 40% reported registration information (#40), and 50% measured inter and intrarater variability (#18). No significant changes were observed in the rates of adherence to these 12 items before and after December 2020. Conclusion: The reporting quality of artificial intelligence studies according to CLAIM guidelines, in our study sample, showed room for improvement. We recommend that the authors and reviewers have a solid understanding of the relevant reporting guidelines and ensure that the essential elements are adequately reported when writing and reviewing the manuscripts for publication.

Intraoperative navigation in craniofacial surgery

  • Dong Hee Kang
    • Archives of Craniofacial Surgery
    • /
    • v.25 no.5
    • /
    • pp.209-216
    • /
    • 2024
  • Craniofacial surgery requires comprehensive anatomical knowledge of the head and neck to ensure patient safety and surgical precision. Over recent decades, there have been significant advancements in imaging techniques and the development of real-time surgical navigation systems. Intraoperative navigation technology aligns surgical instruments with imaging-derived information on patient anatomy, enabling surgeons to closely follow preoperative plans. This system functions as a radiologic map, improving the accuracy of instrument placement and minimizing surgical complications. The introduction of first-generation navigation systems in the early 1990s revolutionized surgical procedures by enabling real-time tracking of instruments using preoperative imaging. Initially utilized in neurosurgery, intraoperative navigation has since become standard practice in otolaryngology, cranio-maxillofacial surgery, and orthopedics. Since the 2000s, second-generation navigation systems have been developed to meet the growing demand for precision across various surgical specialties. The adoption of these systems in craniofacial surgery has been slower, but their use is increasing, particularly in procedures such as foreign body removal, facial bone fracture reconstruction, tumor resection, and craniofacial reconstruction and implantation. In Korea, insurance coverage for navigation in craniofacial surgery began in 2021, and new medical technologies for orbital wall fracture treatment were approved in August 2022. These technologies have only recently become clinically available, but are expected to play an increasingly important role in craniofacial surgery. Intraoperative navigation enhances operative insight, improves target localization, and increases surgical safety. Although these systems have a steep learning curve and initially prolong surgery, efficiency improves with experience. Calibration issues, registration errors, and soft tissue deformation can introduce inaccuracies. Nonetheless, navigation technology is evolving, and the integration of intraoperative computed tomography data holds promise for further enhancements of surgical accuracy. This paper discusses the various types and applications of navigation employed in craniofacial surgery, highlighting their benefits and limitations.

Analysis on Creative Thinking Leaning Between Scientifically Gifted Students and Normal Students (과학영재와 일반학생들의 창의적 사고 편향에 대한 분석)

  • Chung, Duk-Ho;Park, Seon-Ok
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.1
    • /
    • pp.175-191
    • /
    • 2011
  • This study is to investigate the creative thinking style and it's leaning that normal students and scientifically gifted students use mainly at processing information. Right Brain vs Left Brain Creativity Test(R/LCT) and Brain Preference Indicator(BPI) is taken to investigate the creative thinking style of normal students(N=144) and scientifically gifted students(N=97). In the R/LCT, the normal students responded that they prefer to use right-brain thinking rather than left-brain thinking. But the scientifically gifted students prefer to left-brain thinking. The normal students showed most preference for Holistic Processing of right side brain and they did most avoiding for Verbal Processing of left side brain. The scientifically gifted students showed most preference for Logical Processing of left side brain. And they did most avoiding for Random Processing of right side brain. There was a meaningful difference between left side brain preference group and right side brain preference group on Sequential, Symbolic, Logical, Verbal, Random, Intuitive, Fantasy-oriented Processing of normal Students. But the scientifically gifted students showed a meaningful difference in right side brain processing mainly. In other word, all the scientifically gifted students took an lean processing in Logical, Symbolic, Linear Processing, etc. In sum, the scientifically gifted students are unequal in at processing information against the normal students. So it is required more appropriate teaching-learning method based on the creative thinking style and it's leaning for effective gifted education.

Development of Question Cards for Fossil Exhibition and Comparison of Communication Depending on Whether to Use the Cards in a Fossil Gallery (화석 전시물에 대한 질문카드 개발 및 활용 여부에 따른 관람 중 소통의 특징 비교)

  • Park, Eun-Ji;Lee, Sun-Kyung;Kim, Chan-Jong;Kim, Ki-Sang
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.6
    • /
    • pp.799-814
    • /
    • 2010
  • This study aimed at developing a set of question cards for fostering deep understanding and encouraging reasoning about fossils and analyze the characteristics of visitors' communication depending on whether to use the question cards in a fossil gallery. Through several steps, a card set consisted of nine generic questions about fossil exhibitions and guidance for using question cards were developed. Data related to visitors' communications were collected from 18 peer groups (from 5th to 9th grade) visiting the fossil gallery of Gwacheon National Science Museum. Visiting groups' interactions were videotape recorded and transcribed. 'Holding time,' the types of 'actions,' and the types of 'conversation' were analysed. Visitors' actions were divided into three categories: ‘look’, 'speech', and 'motion.' Furthermore, visitors' conversations categorized as 'speech' were subdivided into four patterns: 'enumerative,' 'consensual,' 'responsive,' and 'argumentative.' Using the question cards contributes to increase holding time and most of the visiting actions. Most of the conversation patterns also increased except the responsive pattern. In conclusion, using question cards in a fossil gallery could facilitate concentrated and meaningful visits by enhancing active verbal and non-verbal communications between exhibit and visitor or among visitors, encouraging visitors' reasoning about exhibits, and guiding visitors what and how to focus on exhibits.

Effects of Personal Protective Equipment Practice Education on the Effectiveness of Repeated Learning and Satisfaction (개인보호구 실습교육의 반복학습 효과와 만족도에 미치는 영향)

  • Dae Jin Jo;Won Souk Eoh
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.156-170
    • /
    • 2023
  • Objectives: This study conducted practical training to improve the proper usage of personal protective equipment(PPE), which greatly impacts workplace safety and health management. Personal protective equipment education was conducted through active participation, without theoretical modules, and aimed to identify the effects of repeated practical education and determine ways to increase participant satisfaction. Methods: Study data were analyzed using the IBM SPSS Statistics ver.29 software. First, participants' general characteristics were analyzed with frequency analysis. Second, the normality and equality of variances (Leven's test) were tested for the dependent variables prior to statistical analyses to determine the use of parametric tests. In general, normality is assumed when the sample size is 30 or more per the central limit theorem (Park et al., 2014). As our sample size of health management workers was 43, normality can be assumed. However, to ensure rigor of the study, we examined skewness and kurtosis. The results confirmed that the data were normally distributed. Third, the effects of repeated PPE training were analyzed using paired t-tests. Fourth, differences in satisfaction with PPE training according to the safety and health job position and safety and health certification were analyzed with t-test and Welch's t-test. For parameters that did not meet the assumption of equal variances, the Welch's t-test was performed. Results: Repeated PPE training improved the educational outcomes, and the improvements were significant in the 1st and 2nd respiratory PPE and safety and hygiene PPE training evaluations (p<.001). In terms of safety and health job position, repeated training led to improvements in educational outcomes, with significant improvements observed among supervisors and specialized health management institution workers in the 1st and 2nd training evaluations (p<.005). In terms of safety certification, repeated training led to improvements in educational outcomes, with significant improvements observed among both certified and non-certified individuals (p<.005). Regarding satisfaction with PPE training according to safety and health job positions, specialized health management institution workers showed greater satisfaction than supervisors, with significant differences in the satisfaction for expertise of lecture, work relevance, and lecturer's attitude (p<.001). Regarding satisfaction with PPE training according to safety and health certification, satisfaction was higher among certified individuals, with significant differences in satisfaction for work relevance and lecture attitude (p<.05) Conclusions: PPE education should be recommended to be provided as practical training. Repeated training can enhance educational outcomes for individuals with inadequate knowledge and understanding of PPE prior to education. For individuals with high levels of pre-existing knowledge and understanding of PPE, the results show that various training experiences should be provided to enhance their satisfaction. Therefore, it suggests that the workplace should actively seek educational media and methods to acquire expertise and skills in wearing personal protective equipment and improve the ability to use

A Study on Regional-customizededucation program selection model using big data analysis (빅데이터 분석을 활용한 지역 맞춤형 교육프로그램 선정 모형 개발)

  • Hyeon-Seong Kim;Jin-Sook Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.381-388
    • /
    • 2023
  • This thesis is purposed to develop a regional-customized education program selection model using big data analysis. Based on the literature review, the concepts and characteristics of big data and lifelong education are analyzed. In addition, this thesis presents how to collect the data for lifelong education and to use big data suitable for the characteristics of lifelong education. Based on these results, a regional- customized lifelong education program selection model is developed. The regional customized lifelong education program model is developed by the following six steps. The customized education program model proposed in this study has a high degree of flexibility in terms of practical use, as it can be utilized in real-time data provision methods such as the nationally approved Lifelong Learning Personal Status Survey without the need for analysis one year later, allowing for selective analysis and future predictions. It is clear that there is a significant need and value for big data in the education field. Furthermore, all programs used in the sample model are provided free of charge, and due to the programming nature, the community is actively engaged in exchanges, making it very easy to modify and improve for the development of a more complete education program model in the future.

Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms (다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석)

  • LEE, Jung-Hee;IM, Jung-Ho;KIM, Kyoung-Min;HEO, Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.81-99
    • /
    • 2015
  • The acceleration of global warming has required better understanding of carbon cycles over local and regional areas such as the Korean peninsula. Since forests serve as a carbon sink, which stores a large amount of terrestrial carbon, there has been a demand to accurately estimate such forest carbon sequestration. In Korea, the National Forest Inventory(NFI) has been used to estimate the forest carbon stocks based on the amount of growing stocks per hectare measured at sampled location. However, as such data are based on point(i.e., plot) measurements, it is difficult to identify spatial distribution of forest carbon stocks. This study focuses on urban areas, which have limited number of NFI samples and have shown rapid land cover change, to estimate grid-based forest carbon stocks based on UNFCCC Approach 3 and Tier 3. Land cover change and forest carbon stocks were estimated using Landsat 5 TM data acquired in 1991, 1992, 2010, and 2011, high resolution airborne images, and the 3rd, 5th~6th NFI data. Machine learning techniques(i.e., random forest and support vector machines/regression) were used for land cover change classification and forest carbon stock estimation. Forest carbon stocks were estimated using reflectance, band ratios, vegetation indices, and topographical indices. Results showed that 33.23tonC/ha of carbon was sequestrated on the unchanged forest areas between 1991 and 2010, while 36.83 tonC/ha of carbon was sequestrated on the areas changed from other land-use types to forests. A total of 7.35 tonC/ha of carbon was released on the areas changed from forests to other land-use types. This study was a good chance to understand the quantitative forest carbon stock change according to the land cover change. Moreover the result of this study can contribute to the effective forest management.

Design requirements of mediating device for total physical response - A protocol analysis of preschool children's behavioral patterns (체감형 학습을 위한 매개 디바이스의 디자인 요구사항 - 프로토콜 분석법을 통한 미취학 아동의 행동 패턴 분석)

  • Kim, Yun-Kyung;Kim, Hyun-Jeong;Kim, Myung-Suk
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • TPR(Total Physical Response) is a new representative learning method for children's education. Today's approach to TPR has focused on signals from a user which becomes input data in a human-computer interaction, but the accuracy of sensing from body signals(e. g. motion and voice) isn't so perfect that it seems difficult to apply on an education system. To overcome these limits, we suggest a mediating interface device which can detect the user's motion using correct numerical values such as acceleration and angular speed. In addition, we suggest new design requirements for the mediating device through analyzing children's behavior as human factors by ethnography research and protocol analysis. As a result, we found that; children are unskilled in physical control when they use objects; tend to lean on an object unconsciously with touch. Also their behaviors are restricted, when they use objects. Therefore a mediating device should satisfy new design requirements which are make up for unskilled handling, support familiar and natural physical activity.

  • PDF

Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models (Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구)

  • Lee, Saro;Oh, Hyun-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.299-316
    • /
    • 2019
  • The purpose of this study was to analyze landslide susceptibility in the Pyeongchang area using Weight of Evidence (WOE) and Evidential Belief Function (EBF) as probability models and Artificial Neural Networks (ANN) as a machine learning model in a geographic information system (GIS). This study examined the widespread shallow landslides triggered by heavy rainfall during Typhoon Ewiniar in 2006, which caused serious property damage and significant loss of life. For the landslide susceptibility mapping, 3,955 landslide occurrences were detected using aerial photographs, and environmental spatial data such as terrain, geology, soil, forest, and land use were collected and constructed in a spatial database. Seventeen factors that could affect landsliding were extracted from the spatial database. All landslides were randomly separated into two datasets, a training set (50%) and validation set (50%), to establish and validate the EBF, WOE, and ANN models. According to the validation results of the area under the curve (AUC) method, the accuracy was 74.73%, 75.03%, and 70.87% for WOE, EBF, and ANN, respectively. The EBF model had the highest accuracy. However, all models had predictive accuracy exceeding 70%, the level that is effective for landslide susceptibility mapping. These models can be applied to predict landslide susceptibility in an area where landslides have not occurred previously based on the relationships between landslide and environmental factors. This susceptibility map can help reduce landslide risk, provide guidance for policy and land use development, and save time and expense for landslide hazard prevention. In the future, more generalized models should be developed by applying landslide susceptibility mapping in various areas.