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INTRODUCTION

With an increasing number of artificial intelligence (AI) 

Reporting Quality of Research Studies on AI Applications 
in Medical Images According to the CLAIM Guidelines 
in a Radiology Journal With a Strong Prominence in Asia
Dong Yeong Kim1*, Hyun Woo Oh2*, Chong Hyun Suh1

1Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of 
Korea 
2NAVER Inc., Seongnam, Republic of Korea

Objective: We aimed to evaluate the reporting quality of research articles that applied deep learning to medical imaging. 
Using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) guidelines and a journal with prominence in Asia as 
a sample, we intended to provide an insight into reporting quality in the Asian region and establish a journal-specific audit. 
Materials and Methods: A total of 38 articles published in the Korean Journal of Radiology between June 2018 and January 
2023 were analyzed. The analysis included calculating the percentage of studies that adhered to each CLAIM item and 
identifying items that were met by ≤ 50% of the studies. The article review was initially conducted independently by two 
reviewers, and the consensus results were used for the final analysis. We also compared adherence rates to CLAIM before and 
after December 2020.
Results: Of the 42 items in the CLAIM guidelines, 12 items (29%) were satisfied by ≤ 50% of the included articles. None of 
the studies reported handling missing data (item #13). Only one study respectively presented the use of de-identification 
methods (#12), intended sample size (#19), robustness or sensitivity analysis (#30), and full study protocol (#41). Of the 
studies, 35% reported the selection of data subsets (#10), 40% reported registration information (#40), and 50% measured 
inter and intrarater variability (#18). No significant changes were observed in the rates of adherence to these 12 items before 
and after December 2020.
Conclusion: The reporting quality of artificial intelligence studies according to CLAIM guidelines, in our study sample, showed 
room for improvement. We recommend that the authors and reviewers have a solid understanding of the relevant reporting 
guidelines and ensure that the essential elements are adequately reported when writing and reviewing the manuscripts for 
publication.
Keywords: Reporting quality; Artificial intelligence; Medical imaging; CLAIM guidelines; Asia

publications in the field of medical imaging, it becomes 
imperative to have evidence-based guidelines to unify 
the reporting of AI studies [1,2]. Owing to their complex 
methodology and weak reporting qualities, AI studies are 
perceived as challenging for readers [3-5]. To address this 
issue, initial protocols were derived from the standards set 
for randomized clinical trials. Specifically, the Consolidated 
Standards of Reporting Trials-AI (CONSORT-AI), Standard 
Protocol Items: Recommendations for Interventional 
Trials-AI (SPIRIT-AI) guidelines, and Developmental and 
Exploratory Clinical Investigations of DEcision support 
systems driven by AI (DECIDE-AI) were originally developed 
for consistent reporting of clinical trials and their protocols 
[6-8]. In addition, Standards for Reporting of Diagnostic 
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generalizability of research [11].

Literature Search Strategy and Study Selection
Using the MEDLINE database, we searched for all potential 

articles discussing AI applications in medical imaging 
published in a single peer-reviewed journal, the KJR, 
between June 2018 and January 2023. The search terms 
were ((“artificial intelligence”) OR (“deep learning”) OR 
("machine learning") OR (“convolutional neural network”) 
OR (“deep neural network”)) AND (“Korean Journal of 
Radiology” [Journal]). The search date was May 10, 2023. A 
total of 83 records (i.e., abstracts and titles) were identified 
from the MEDLINE database, and two reviewers (D.Y.K., with 
2 years of experience in radiology, and H.W.O., with 4 years 
of experience in AI development and research) evaluated the 
eligibility of each article. Among them the following papers 
were excluded: 17 review articles, 10 editorials, 5 non-AI 
studies, and 1 paper each of survey, case report, or erratum. 

After the first screening, the eligibility of the remaining 48 
studies was evaluated. Four records were excluded because 
they did not use deep learning. Six records were excluded 
because they were not related to model development or 
validation studies. As a result, full texts from 38 studies 
were included in the analysis [22-59] (Fig. 1).

Data Extraction
The following data were independently extracted from 

the included articles: name of the first author, year of 
publication, type of AI application (classification, detection, 
segmentation, or image reconstruction), and study 
objective (model development or validation). In addition, 
for each article, we evaluated the sections (title, abstract, 
introduction, methods, results, discussion, and other 
information) of the included papers according to CLAIM 
and referred to the detailed topics (such as study design, 
data, ground truth, data partitions, and model) of CLAIM to 
evaluate the methods and results sections. Items #9 to #13 
and #20 to #27, which belong to the methods section, were 
evaluated only in articles on model development. Data were 
independently extracted by two reviewers (D.Y.K. and H.W.O.). 
If a disagreement occurred, a third reviewer (C.H.S., with 10 
years of experience in performing systematic reviews) was 
consulted to reach a consensus.

Data Analysis
We identified the CLAIM checklist items to which ≤ 50% 

of the articles adhered. We grouped these items and a few 

Accuracy Study-AI (STARD-AI) and Transparent Reporting of 
a multivariable prediction model of Individual Prognosis Or 
Diagnosis-AI (TRIPOD-AI) are currently under development 
[9,10].

Simultaneously, the Checklist for Artificial Intelligence 
in Medical Imaging (CLAIM), a comprehensive guideline 
covering the broad application of AI in medical imaging 
with an emphasis on model development, was published [11] 
(Table 1). Based on these advantages, CLAIM is one of the 
best practice guidelines for AI-supported medical imaging 
research [12] and is endorsed by the Radiological Society 
of North America (RSNA) journals, which are one of the 
premier journal groups in medical imaging. 

To the best of our knowledge, assessments of the quality 
of reporting across a broad spectrum of AI medical imaging 
studies using the CLAIM guidelines as an evaluation tool are 
limited. Previous studies addressing adherence to CLAIM in 
AI studies do not fully utilize the advantages of the CLAIM 
guidelines because they limit the topic to specific disease 
entities [13-18] or specific AI application methods [19,20]. 
In addition, although several AI reporting guidelines, 
including CLAIM, are primarily developed in Western 
countries, AI research is also being actively conducted in 
Asia, most notably by Chinese and Korean researchers [21]. 
Therefore, analyzing studies with various applications and 
disease entities from countries distant from the guidelines’ 
epicenters could be uniquely informative, for which the 
Korean Journal of Radiology (KJR) could be a good sample, 
as it is a broad-spectrum general radiology journal with a 
reputation and strong presence in contributions from Asia. 
Moreover, such an analysis would provide a valuable journal-
specific audit.

This study aimed to evaluate the reporting quality of 
research articles that have applied deep learning to medical 
imaging. For this assessment, we used the CLAIM guidelines. 
We selected a journal with prominence in Asia as a sample, 
with the intention of providing insight into reporting quality in 
the Asian region and, also establishing a journal-specific audit.

MATERIALS AND METHODS

Overview of CLAIM
CLAIM is based on the STARD guidelines and has 

been expanded to cover AI applications in medical 
imaging, such as classification, image reconstruction, 
text analysis, and workflow optimization. It focuses on 
AI model development and particularly emphasizes the 
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Table 1. Adherence to CLAIM checklist

Section and Topic Item # Checklist item 
Number of 

articles adhered

Title or Abstract
  1 Identification as a study of AI methodology, specifying the category of technology used 

(e.g., deep learning)
36/38 (95%)

  2 Structured summary of study design, methods, results, and conclusions 38/38 (100%)
Introduction 

  3 Scientific and clinical background, including the intended use and clinical role of the AI 
approach

38/38 (100%)

  4 Study objectives and hypotheses 38/38 (100%)
Methods 

Study design   5 Prospective or retrospective study 36/38 (95%)
  6 Study goal, such as model creation, exploratory study, feasibility study, non-inferiority trial 38/38 (100%)

Data   7 Data sources 38/38 (100%)
  8 Eligibility criteria: how, where, and when potentially eligible participants or studies were 

identified (e.g., symptoms, results from previous tests, inclusion in registry, 
patient-care setting, location, dates)

34/38 (89%)

  9 Data pre-processing steps 18/23 (78%)
10 Selection of data subsets, if applicable 8/23 (35%)
11 Definitions of data elements, with references to Common Data Elements NA
12 De-identification methods 1/23 (4%)
13 How missing data were handled 0/23 (0%)

Ground truth 14 Definition of ground truth reference standard, in sufficient detail to allow replication 26/27 (96%)
15 Rationale for choosing the reference standard (if alternatives exist) 7/10 (70%)
16 Source of ground-truth annotations; qualifications and preparation of annotators 15/20 (75%)
17 Annotation tools 14/18 (78%)
18 Measurement of inter- and intrarater variability; methods to mitigate variability and/or 

resolve discrepancies
9/18 (50%)

Data partitions 19 Intended sample size and how it was determined 1/38 (3%)
20 How data were assigned to partitions; specify proportions 21/23 (91%)
21 Level at which partitions are disjoint (e.g., image, study, patient, institution) 21/23 (91%)

Model 22 Detailed description of model, including inputs, outputs, all intermediate layers and 
connections

20/23 (87%)

23 Software libraries, frameworks, and packages 11/23 (48%)
24 Initialization of model parameters (e.g., randomization, transfer learning) 9/23 (39%)

Training 25 Details of training approach, including data augmentation, hyperparameters, number of 
models trained

14/23 (61%)

26 Method of selecting the final model 5/23 (22%)
27 Ensembling techniques, if applicable 0/23 (0%)

Evaluation 28 Metrics of model performance 38/38 (100%)
29 Statistical measures of significance and uncertainty (e.g., confidence intervals) 37/38 (97%)
30 Robustness or sensitivity analysis 1/38 (3%)
31 Methods for explainability or interpretability (e.g., saliency maps), and how they were 

validated
26/30 (87%)

32 Validation or testing on external data 27/34 (79%)
Results

Data 33 Flow of participants or cases, using a diagram to indicate inclusion and exclusion 31/38 (82%)
34 Demographic and clinical characteristics of cases in each partition 26/38 (68%)

Model performance 35 Performance metrics for optimal model(s) on all data partitions 38/38 (100%)
36 Estimates of diagnostic accuracy and their precision (such as 95% confidence intervals) 37/38 (97%)



1182

Kim et al.

https://doi.org/10.3348/kjr.2023.1027 kjronline.org

additional items (unless included in the “≤ 50% adherence 
rate” items) we wanted to review further, into 5 relevant 
domains (Table 2). Suggestions for enhancing the quality of 
medical imaging articles involving AI were provided based 
on these established domains. We also compared the rates 
of adherence to the CLAIM checklist (published in March 
2020) between articles published up to December 2020 and 
those published in January 2021 and later using the chi-
squared test.

RESULTS

Characteristics of the Included Studies
The characteristics of the 38 included studies are 

summarized in Supplementary Table 1. In terms of the 
type of AI application, 9 studies (24%) applied AI for 
classification [22,27,31,32,38,39,43,55,57], 6 studies 
(16%) for detection [35,36,49-51,58], 11 studies (29%) for 
segmentation [25,28,29,33,37,40,41,45,46,48,53], and 12 
studies (31%) for image reconstruction [23,24,26,30,34,42,
44,47,52,54,56,59]. The study objective of 23 papers (61%) 
was classified as model development [22,23,25,26,28-
32,35-39,42,43,45,46,48,49,53,55,59], and the remaining 
15 papers (39%) were classified as validation studies 
[24,27,33,34,40,41,44,47,50-52,54,56-58]. Five studies 
(13%) were prospective [22,41,42,55,58] and 33 studies 
(87%) were retrospective [23-40,43-54,56,57,59].

Identification of studies via databases and registers
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   Records identified from
      MEDLINE (n = 83)

   Records screened
      (n = 83)

   Reports assessed for eligibility
      (n = 48)

   Studies included in review
      (n = 38)

  Records excluded
     - Review articles (n = 17)
     - Editorial (n = 10)
     - Not AI studies (n = 5)
     - ‌�Survey, case reports and erratum 

(each n = 1)

  Reports excluded
     - ‌�Did not use deep learning (n = 4)
     - ‌�Not related to model development 

or validation study (n = 6)

Fig. 1. Flow diagram of the study selection process. AI = artificial intelligence

Table 1. Adherence to CLAIM checklist (continued)

Section and Topic Item # Checklist item 
Number of 

articles adhered
37 Failure analysis of incorrectly classified cases 16/22 (73%)

Discussion
38 Study limitations, including potential bias, statistical uncertainty, and generalizability 38/38 (100%)
39 Implications for practice, including the intended use and/or clinical role 38/38 (100%)

Other information
40 Registration number and name of registry 2/5 (40%)
41 Where the full study protocol can be accessed 1/38 (3%)
42 Sources of funding and other support; role of funders 34/38 (89%)

CLAIM = Checklist for Artificial Intelligence in Medical Imaging, AI = artificial intelligence, NA = not applicable
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Fig. 2. Bar chart demonstrating the proportion of articles that satisfied each item of the CLAIM checklist. Twelve items (29%) were 
reported in ≤ 50% of the articles. CLAIM = Checklist for Artificial Intelligence in Medical Imaging

Adherence to CLAIM
The included articles were evaluated for adherence to each 

item of the CLAIM checklist (Table 1). Of the 42 guideline 
items, 12 items (29%) were reported in ≤ 50% of the articles 
(Fig. 2). Most of the studies met the criteria for the title, 
abstract, introduction, and discussion sections, but there were 
frequent instances of incomplete reporting in the methods 

and other information sections, particularly concerning the 
data topic. None of the studies reported handling missing 
data (item #13). Only one study respectively reported the 
use of de-identification methods (item #12), intended 
sample size (item #19), robustness or sensitivity analysis 
(item #30), and the full study protocol (item #41). Thirty 
five percent of the studies reported the selection of data 
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Table 2. Grouping of the items with ≤ 50% adherence rate and additional items (#22 and 25)

Domain CLAIM items Checklist
1.‌� Information concerning data and 

data partitioning
#10, #12, 
#13, #19

1. ‌�Report detailed information about data and data partitions. 
- If subsets of the raw data were used, report detailed information. 
- Report the methods of de-identification. 
- State clearly how missing data were handled.

2. ‌�Mention the intended sample size and a reference about how to calculate sample 
size.

2. ‌�Concrete description about ground 
truth 

#18 3. ‌�Provide methods for evaluating inter- and intrarater variability and ways to resolve 
them.

3. ‌�Details concerning model and 
training 

#22, #23, 
#24, #25, 
#26, #27

4. ‌�Provide techniques to construct and train AI model for reproducibility and 
transparency. 
- Report a detailed structure of the model and the name of software libraries. 
- Indicate parameter initialization methods. 
- Describe all the training procedures and hyperparameters. 
- State model selection method and ensemble method, if applicable.

4. Evaluating model performance #30 5. ‌�Perform robustness or sensitivity analysis to ensure software to keep an “acceptable” 
behavior, in spite of exceptional or unforeseen execution conditions.

5. Other information #40, #41 6. ‌�If the current study is a prospective study, it is recommended to provide registration 
information.

7. ‌�Share all computer code used for modeling or data analysis in a publicly accessible 
repository.

CLAIM = Checklist for Artificial Intelligence in Medical Imaging, AI = artificial intelligence
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subsets (item #10), 40% reported registration information 
(item #40), and 50% measured inter and intrarater 
variability (item #18). 

For the 12 items that were met by less than 50% of the 
included articles, there were no significant changes in 
the adherence rates between the two periods. There was 
a slight increase in adherence to data partitions, model, 
and training-related items (#20, #21, and #22) in the 
methods section, but without a statistical difference, while 
item #25, related to detailed reporting on the training 
procedure, showed a statistically significant improvement 
(33% to 79%; P = 0.031). In the results section, item 
#34, which was regarding reporting demographic and 
clinical characteristics for each data partition, also showed 
marginal improvement (45% to 78%; P = 0.05). We grouped 
the 12 items with ≤ 50% adherence rate and two additional 
items (#22 and #25) that we wanted to emphasize, into 5 
domains, as listed below (Table 2).

Information Concerning Data and Data Partitioning 
(Items #10, #12, #13, and #19)

The use of data subsets, such as data cropping, 
focusing on a specific segment of the dataset, could 
facilitate model training and testing [60]. According to 
the CLAIM guidelines, the use of data subsets should be 
indicated when applicable. It was observed that 35% 
of the studies employed this method in their research 
[22,26,31,36,39,43,48,55]. De-identification is an 
important ethical aspect in AI research. In our review, only 
one study (4%) explicitly reported the use of anonymization 
[31]. In the reviewed articles, the target tasks were primarily 
related to computer vision such as image classification, 
image segmentation, detection, and image recognition. 
Owing to the nature of these tasks, there was no mention 
of techniques for handling missing data, which are more 
commonly associated with tabular data. Item #19 addresses 
the intended sample size. Only one article (3%) met these 
criteria [51]. It mentioned the intended sample size and 
provided reference for calculating the sample size tables for 
receiver operating characteristic studies.

Concrete Descriptions about Ground Truth (Item #18)
Item #18 concerns measuring inter and intrarater 

variability and the method to resolve it. This could not be 
applied to 20 papers. Therefore, item #18 was evaluated 
for 18 papers altogether, and 50% of these articles met the 
criteria [32,38,39,44-46,48,49,58]. Two studies [32,39] 

did not suggest methods to assess inter and intrarater 
variability, whereas seven studies [38,44-46,48,49,58] did 
not report methods to reduce or mitigate this variability or 
resolve discrepancies.

Details Concerning Model and Training (Items #22, #23, 
#24, #25, #26, #27)

In the quest for reproducibility and transparency in 
the field of AI research, a comprehensive and detailed 
description of an AI model’s structure is a critical 
element. CLAIM requests a ‘complete detailed structure’: 
the components of input and output, the structure of 
the neural network including pooling, normalization, 
regularization, and activation layer. It was found that 
20 out of 23 (87%) articles provided a detailed structure 
of their proposed model [22,23,25,26,28,29,32,35-
37,39,42,43,45,46,48,49,53,55,59]. Among the three 
articles that did not provide enough details, one cited a 
previous paper for its model structure [30], whereas the 
other two articles lacked sufficient detail. Software libraries 
(item #23), initialization of model parameters (item #24), 
details of the training approach (item #25), method of 
selecting the final model (item #26), and ensembling 
techniques (item #27) are described in the Supplementary 
Material. 

Evaluating Model Performance (Item #30)
Item #30 concerns robustness or sensitivity analysis. 

Among the included articles, only one (3%) [25] satisfied 
the criteria. The paper mentioned that subgroups of various 
clinical conditions were included, and several types of 
computed tomography scanners were used to develop a 
robust deep-learning algorithm.

Other Information (Items #40 and #41)
Item #40 is related to clinical trial registration, but most 

of the included studies were retrospective. Therefore, only 
five studies could be evaluated, and 40% of these studies 
reported registration information [41,58]. CLAIM emphasizes 
that authors should share all computer code used for 
modeling or data analysis in a publicly accessible repository; 
in this aspect, item #41 was satisfied by only one article (3%) 
[53]. Another study [56] mentioned that all data generated 
or analyzed were included in the text and supplements, but 
the computer code was not publicly disclosed. 
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DISCUSSION

Our study revealed the focus areas for improving the 
reporting quality of studies on AI applications in medical 
imaging. Although the results were obtained from a single 
journal, given the status of the journal (including Q1 status 
according to the Journal Citation ReportsTM and Scimago 
Journal & Country Rank [61,62]), they may serve as a 
snapshot of the reporting quality among articles generally 
regarded as high-quality research studies in the field of 
radiology. Our evaluations can be segmented into five 
categories, where detailed guidance and recommendations 
can be provided: 1) information concerning data and data 
partitioning, 2) concrete descriptions about ground truth, 
3) details concerning model and training, 4) evaluating model 
performance, and 5) other information.

The results of this study were similar to those of previous 
studies using CLAIM [13,15,16]. In the case of item #18, 
dealing with inter and intrareader variability, only 50% 
of the studies satisfied the criteria, and this was also low 
in previous studies [13,16]. Human perception remains in 
the initial stage of image reading; however, a radiologist’s 
proficiency depends on multiple factors. Consequently, the 
outcomes of an imaging technique frequently hinge on the 
inherent qualities of the observer. To address this issue, 
it is advised to involve multiple observers and conduct 
independent readings to gain a comprehensive understanding 
of potential variations in the results [63]. 

In addition, the achievement rate of item #30, robustness, 
or sensitivity analysis, was very low, and similar results 
have been reported in previous studies [15,16]. Robustness 
can be defined as the ability of the software to maintain 
“acceptable” behavior despite exceptional or unforeseen 
execution conditions [64]. To some extent, the achievements 
of deep learning models rely on their ability to generalize 
and remain stable. Studies have demonstrated that these 
models can produce different outputs when presented with 
slight variations in input data. Such response variability 
to minor changes might indicate algorithmic instability, 
potentially resulting in misclassification and challenges in 
generalization [65]. Therefore, it is important to evaluate 
the robustness and stability of AI models before their 
clinical implementation, especially in the field of medical 
imaging, and authors should consider reporting them. 

In the case of the ground truth topic in the methods 
section, the report rate exceeded 50%, except for item #18, 
which had a different result from that in previous studies 

that showed a low report rate for this item [13,15,16]. While 
previous studies collected and evaluated specific disease 
imaging studies, the current study conducted a wide range of 
evaluations without distinguishing between AI applications 
and diseases. As a result, many papers dealing with image 
reconstruction and segmentation were included. Since this 
is a research area where alternative reference standards are 
relatively difficult to find, it is judged that the report rate 
was high because this study was a little less stringent in 
defining the ground truth than other studies.

Reproducibility and transparency in deep-learning modeling 
are crucial factors for enhancing the quality of research, 
and standardized guidelines are necessary to achieve them. 
However, in the current guidelines, items #22 and #25, 
may be perceived as vague or overly strict. For example, if 
a convolution layer is employed as an intermediate layer, 
many details, such as stride, padding, dilation rate, and bias 
should be applied [66]. Describing these details thoroughly 
may be perceived as being redundant or overly strict. It 
would be advisable to provide further guidelines that specify 
the methodological details that should be included rather 
than demanding a full, exhaustive description. Furthermore, 
the clarity can be enhanced by reorganizing certain 
items. For instance, item #10, which is related to the 
preprocessing of the input, could be included in item #22. 
Part of item #25 concerning the selection method of the 
best-performing model, could be transferred to item #26. 
Finally, item #13, the handling of missing data, pertains 
only to tabular data [67]. Therefore, a modification that 
mandates this item only in papers using tabular data can 
enhance the clarity of the guidelines. As mentioned above, 
there are many opinions regarding improvements through 
the reorganization or clarification of some items, and an 
updated CLAIM that reflects these is being developed [12].

Sharing executable algorithms or data in a publicly 
accessible repository is currently recommended for 
publication by most peer-reviewed journals, including 
Radiology [68] and not just by the CLAIM guidelines. 
However, a previous study using CLAIM [16] reported a 
low adherence rate to this policy. Code sharing facilitates 
the evaluation of an AI algorithm using data from the 
intended healthcare system, which is required to confirm the 
algorithm’s generalizability to the user’s environment [2,69]. 
In addition, code sharing can provide users with a deeper 
insight into the necessary computing power and logistical 
factors, such as data transfer and image preprocessing [2]. 

Our study has several limitations. First, we used a specific 
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journal as the study sample; therefore, our results may have 
limited generalizability and should be viewed along with 
other similar published studies. Second, CLAIM comprises 
a multitude of reporting guidelines for AI research studies 
and has its own limitations. For example, the direction of 
reporting the sample size does not distinguish between the 
training and test datasets. While sample size estimation is 
critical for testing an algorithm with adequate statistical 
power, a priori estimation of an adequate training data size is 
not entirely practical or feasible [2]. CLAIM is currently under 
revision [12], and our study results would need to be updated 
when new reporting guidelines emerge. Finally, there is 
potential inexperience in our analysis owing to the inaugural 
application of the CLAIM criteria. Unfamiliarity with certain 
aspects of the criteria may have influenced our evaluation.

In conclusion, the reporting quality of AI studies with 
respect to CLAIM of AI studies in our study sample, showed 
room for improvement. We recommend that the authors 
and reviewers have a solid understanding of the relevant 
reporting guidelines and ensure that the essential elements 
are adequately reported when writing and reviewing the 
manuscripts for publication.
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