This paper describes a recurrent neural network (RNN) for the fault classification of a blade pitch system of a spar-type floating wind turbine. An artificial neural network (ANN) can effectively recognize multiple faults of a system and build a training model with training data for decision-making. The ANN comprises an encoder and a decoder. The encoder uses a gated recurrent unit, which is a recurrent neural network, for dimensionality reduction of the input data. The decoder uses a multilayer perceptron (MLP) for diagnosis decision-making. To create data, we use a wind turbine simulator that enables fully coupled nonlinear time-domain numerical simulations of offshore wind turbines considering six fault types including biases and fixed outputs in pitch sensors and excessive friction, slit lock, incorrect voltage, and short circuits in actuators. The input data are time-series data collected by two sensors and two control inputs under the condition that of one fault of the six types occurs. A gated recurrent unit (GRU) that is one of the RNNs classifies the suggested faults of the blade pitch system. The performance of fault classification based on the gate recurrent unit is evaluated by a test procedure, and the results indicate that the proposed scheme works effectively. The proposed ANN shows a 1.4% improvement in its performance compared to an MLP-based approach.
To investigate the perceptions and attitudes of dental hygienists toward radiation safety management in Korea. A total of 800 dental hygienists were randomly selected for an anonymous survey, and 203 of them participated. The questionnaire items included the following: sex, career period, type of installed radiographic equipment, recognition of the diagnostic reference level (DRL), participation in radiation safety education, and attitudes toward radiation protection for both patients and dental hygienists. The participants were divided into two groups according to their years of experience (< 10 years versus ≥ 10 years). The difference between the groups was investigated according to frequency distribution. Fisher's exact test or Pearson's chi-square (𝛘2) test was used as appropriate. A regression analysis was performed to investigate the impact of wearing a thyroid collar for personnel protection during patient radiation exposure. The types of installed radiographic equipment included panoramic radiography (96.1%), cephalometric radiography (76.9%), intraoral radiography (72.9%), and cone-beam computed tomography (69.5%). Significant differences were observed in the learning pathway for the DRL (Fisher's exact test, p < 0.05), satisfaction with radiation safety education (Pearson's 𝛘2 test = 5.3975, Pr = 0.02), and use of personnel radiation monitoring systems (Pearson's 𝛘2 test = 18.1233, Pr = 0.000) between the groups. Significant differences were also observed in personnel protection using a thyroid collar and patient protection during panoramic radiography (odds ratio = 14.2). Dental hygienists with more than 10 years of experience were more satisfied with radiation safety education and more interested in radiation monitoring. Considering career experience, customized, continuous, and effective radiation safety management education should be provided.
Journal of the Korea Society of Computer and Information
/
v.26
no.4
/
pp.213-221
/
2021
In this paper, we suggest the Deep Neural Network Model System for predicting results of the match of 'League of Legends (LOL).' The model utilized approximately 26,000 matches of the LOL game and Keras of Tensorflow. It performed an accuracy of 93.75% without overfitting disadvantage in predicting the '2020 League of Legends Worlds Championship' utilizing the real data in the middle of the game. It employed functions of Sigmoid, Relu and Logcosh, for better performance. The experiments found that the four variables largely affected the accuracy of predicting the match --- 'Dragon Gap', 'Level Gap', 'Blue Rift Heralds', and 'Tower Kills Gap,' and ordinary users can also use the model to help develop game strategies by focusing on four elements. Furthermore, the model can be applied to predicting the match of E-sports professional leagues around the world and to the useful training indicators for professional teams, contributing to vitalization of E-sports.
The article is devoted to the actual problem of studying the possibilities of implementing personalization of the user interface in accordance with the personality psychotypes. The psychological aspect of user interface design tools is studied and the correspondence of their application to the manifestations of personality psychotypes is established. The results of the distribu-tion of attention of users of these categories on the course page of the educational platform are presented and the distribution of attention in accordance with the focus on educational material is analyzed. Individual features and personal preferences regarding the used design tools are described, namely the use of accent colors in interface design, the application of the prin-ciples of typographic hierarchy, and so on. In accordance with this, the prospects for implementing personalization of the user interface of the educational platform are described. The results of the study allow us to state the relevance of developing and applying personalization of the user interface of an educational platform to improve learning outcomes in accordance with the psychological impact of individual design tools, and taking into account certain features of user categories. The research is devoted to the study of user attention concentration using heatmaps, in particular based on eyetreking technology, we will investigate the distribution of user attention on the course page of an educational platform Ta redistribution of atten-tion in accordance with certain categories of personality psychotypes. The results of the study can be used to rearrange the LMS Moodle interface according to the user's psychotype to achieve the best concentration on the training material. The obtained data are the basis for developing effective user interfaces for personalizing educational platforms to improve the quality of the education.
Jia, Xibin;Lu, Zijia;Mi, Qing;An, Zhefeng;Li, Xiaoyong;Hong, Min
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.12
/
pp.3836-3854
/
2022
The student group division is benefit for universities to do the student management based on the group profile. With the widespread use of student smart cards on campus, especially where students living in campus residence halls, students' daily activities on campus are recorded with information such as smart card swiping time and location. Therefore, it is feasible to depict the students with the daily activity data and accordingly group students based on objective measuring from their campus behavior with some regular student attributions collected in the management system. However, it is challenge in feature representation due to diverse forms of the student data. To effectively and comprehensively represent students' behaviors for further student group division, we proposed to adopt activity data from student smart cards and student attributes as input data with taking account of activity and attribution relationship types from different perspective. Specially, we propose a novel student group division method based on a multi-view student attribute heterogeneous information network (MSA-HIN). The network nodes in our proposed MSA-HIN represent students with their multi-dimensional attribute information. Meanwhile, the edges are constructed to characterize student different relationships, such as co-major, co-occurrence, and co-borrowing books. Based on the MSA-HIN, embedded representations of students are learned and a deep graph cluster algorithm is applied to divide students into groups. Comparative experiments have been done on a real-life campus dataset collected from a university. The experimental results demonstrate that our method can effectively reveal the variability of student attributes and relationships and accordingly achieves the best clustering results for group division.
This paper is an empirical analysis as a reference model that can predict up to the maximum number of elementary school student care needs in local governments across the country. This study analyzed and predicted the characteristics of the region based on machine learning to predict the demand for elementary care in a new apartment complex. For this purpose, a total of 292 variables were used, including data related to apartment structure, such as number of parking spaces per household, and building-to-land ratio, environmental data around apartments such as distance to elementary schools, and population data of administrative districts. The use of various variables is of great significance, and it is meaningful in complex analysis. It is also an empirical case study that increased the reliability of the model through comparison with the actual value of the basic local government.
Journal of The Korean Association of Information Education
/
v.26
no.5
/
pp.307-315
/
2022
The purpose of this study was to design a training program for pre-service elementary teachers, incorporating the concepts of extended reality technologies. This program contained the basic skills necessary for them to utilize in their future classrooms. To accomplish this, 12 undergraduate students of various majors enrolled in one of Korea's national universities of education were selected as research subjects. For a total of 6 times over 6 weeks, they participated in a training program learning the basic concepts of virtual, augmented, and mixed reality, as well as creating their own education software to use in simulated classes. To improve the quality of future research efforts, this study found it would be beneficial to: 1) expand the relevant support equipment, 2) provide students with preliminary, background knowledge of text-based programming, 3) introduce short-term, more intensive training, and 4) improve the survey methods for this research.
Journal of Korea Society of Industrial Information Systems
/
v.15
no.1
/
pp.109-114
/
2010
In this paper, we developed the web content of statistical analysis using statistical package and Active Server Page (ASP). A statistical package is very difficult to learn and use for non-statisticians, however, non-statisticians want to do analyze the data without learning statistical packages such as SAS, S-plus, and R. Therefore, we developed the web based statistical analysis contents using S-plus which is the popular statistical package and ASP. In real application, we developed the web content for various statistical analyses such as exploratory data analysis, analysis of variance, and time series on the web using water quality data. The developed statistical analysis web content is very useful for non-statisticians such as public service person and researcher. Consequently, combining a web based contents with a statistical package, the users can access the site quickly and analyze data easily.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.488-490
/
2022
Recently, interest in industrial accidents such as the Industrial Safety and Health Act and the Serious Accident Punishment Act is increasing, and the demand for safety managers for safety management of workers in research institutes and industrial fields of various fields is increasing. For worker safety management, CCTVs are being installed in factories and workplaces, and workers are monitored to enhance safety management. In this paper, we intend to design a dangerous situation assessment system by constructing data using CCTV in such a workplace and modeling it in JSON format. The data modeling was produced by referring to the data set construction guide for artificial intelligence learning and the quality management guideline of the Korea National Information Society(NIA). Through this system, we want to check what kind of risk management exists in the workplace by risk situation scenario and use it to build a more systematic system.
Christian education for the world after COVID-19 needs to use rapid changes in the surrounding situation as an opportunity to overcome a new crisis so that the church can achieve its educational mission. If the biggest dilemma in the post-Corona era is that there is no authoritative educational prescription anywhere, the most reasonable option for church education in this situation is to emphasize and cultivate learners' ability to flexibly cope with rules that are completely different than before COVID-19. As a natural result of the crisis, Christian education needs to be more interested in the trend of social change in the pandemic era(glocalization, digital transformation, economic inequality, educational environment change, church crisis) and actively reflect its contents in education. In addition, while operating a mobile(or online) church school that combines offline and online, there is an urgent need for an innovative transition to a core church school where certain church schools and churches cooperate with each other, a church school that guarantees a safe learning space, and an ecological church school that is interested in education dealing with climate change and ecology.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.