• Title/Summary/Keyword: use for learning

Search Result 4,737, Processing Time 0.03 seconds

The Effects of Performance and Learning Orientation for the Existing FTA of SMEs in Gwangju and Jeonnam on the Using Intention of a Trilateral FTA among Korea, China and Japan (광주·전남지역 중소기업의 기 체결 FTA 활용성과와 학습지향성이 한·중·일 FTA 활용의지에 미치는 영향)

  • Song, Yun-Ah;Kang, Ji-Won;Lee, Jae-Eun
    • Korea Trade Review
    • /
    • v.41 no.5
    • /
    • pp.41-62
    • /
    • 2016
  • This study made an analysis of the effects of performance and learning orientation for the existing FTA on the intention to use a trilateral FTA among Korea, China and Japan. The results of the empirical analysis of Small and Medium-sized Enterprises(SMEs) located in Gwangju and Jeonnam provinces are as follows. First, there is a positive correlation between the effects of performance for the existing FTA and intention of a trilateral FTA. This result suggests that SMEs' performance feedback can be used as an asset of corporate experience and will be helpful to increase the intention to use a trilateral FTA by contributing to have sustainable competitive advantage of companies. Secondly, there is a positive correlation between the SMEs' learning orientation about FTA and intention to use a trilateral FTA. This result indicates that SMEs have more learning orientation for FTA. They actively acquire and diffuse information. These activities can be helpful for having prior knowledge and absorptive capacity. In conclusion, this study is considered to provide useful theoretical and practical implications that can contribute to enhancing the using intention of a trilateral FTA by explaining the significance of performance feedback and learning orientation.

  • PDF

Path Planning of Unmanned Aerial Vehicle based Reinforcement Learning using Deep Q Network under Simulated Environment (시뮬레이션 환경에서의 DQN을 이용한 강화 학습 기반의 무인항공기 경로 계획)

  • Lee, Keun Hyoung;Kim, Shin Dug
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.127-130
    • /
    • 2017
  • In this research, we present a path planning method for an autonomous flight of unmanned aerial vehicles (UAVs) through reinforcement learning under simulated environment. We design the simulator for reinforcement learning of uav. Also we implement interface for compatibility of Deep Q-Network(DQN) and simulator. In this paper, we perform reinforcement learning through the simulator and DQN, and use Q-learning algorithm, which is a kind of reinforcement learning algorithms. Through experimentation, we verify performance of DQN-simulator. Finally, we evaluated the learning results and suggest path planning strategy using reinforcement learning.

  • PDF

Development and Application of Meta-cognition-based App for Students with Learning Disabilities (학습장애학생을 위한 메타인지기반 앱 개발 및 적용)

  • Kwak, Sungtae;Jun, Woochun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.689-696
    • /
    • 2015
  • In this study, a learning system based on smart learning is proposed so that students with learning disabilities can learn the effective use of meta-cognitive to solve problems arising during the learning process. The features of the proposed system are as follow. First, it is possible to achieve students' individualized learning by use of smart devices and smart education system. Second, it is possible to provide the constant repetition learning for students. Third, students can improve their achievement using the proposed app. The proposed smart education system using meta-cognition was applied to some learning disabilities students. The following results were obtained. First, the disabled students could have an interest in learning math and improve confidence. Second, the student's mathematical problem-solving skills have improved. Third, students' individualized and self-directed learning was achieved.

Development of Learning Strategy e-Learning Contents based on the Storytelling (학습전략 이러닝 콘텐츠 개발 -스토리텔링을 중심으로-)

  • Park, Sung-Mi
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.2
    • /
    • pp.272-285
    • /
    • 2012
  • The purpose of this study was to develop the Learning Strategy e-Learning Contents based on the storytelling in university students. The objective of the Learning Strategy e-Learning Contents based on the storytelling was to increase in learning skill which university students will use to keep major learning during their courses. The Learning Strategy e-Learning Contents was based on the results of pre-research on storytelling and learning skill. In order to verify the effectiveness of the Learning Strategy e-Learning Contents based on the storytelling, it was analyzed to validity of contents by five professionals. The results of the study were as follows. The Learning Strategy e-Learning Contents based on the storytelling for increasing in learning skill of university students consisted of 15 sessions which proceeding a per semester: the starting phase(1-2), the execution phase(3-13), and the ending phase(14-15). The subjects were 20 university students who had randomly assigned to an experimental group(10) and a control group(10). Subjects completed a learning skill scale. Data analyses were conducted using ANCOVA. The results of the analyses revealed that subjects of experimental group showed significantly higher scores on learning skill than one of control group. Based on the above results, it is concluded that the Learning Strategy e-Learning Contents based on the storytelling was effective in improving learning skill of university students.

Exploring modern machine learning methods to improve causal-effect estimation

  • Kim, Yeji;Choi, Taehwa;Choi, Sangbum
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.2
    • /
    • pp.177-191
    • /
    • 2022
  • This paper addresses the use of machine learning methods for causal estimation of treatment effects from observational data. Even though conducting randomized experimental trials is a gold standard to reveal potential causal relationships, observational study is another rich source for investigation of exposure effects, for example, in the research of comparative effectiveness and safety of treatments, where the causal effect can be identified if covariates contain all confounding variables. In this context, statistical regression models for the expected outcome and the probability of treatment are often imposed, which can be combined in a clever way to yield more efficient and robust causal estimators. Recently, targeted maximum likelihood estimation and causal random forest is proposed and extensively studied for the use of data-adaptive regression in estimation of causal inference parameters. Machine learning methods are a natural choice in these settings to improve the quality of the final estimate of the treatment effect. We explore how we can adapt the design and training of several machine learning algorithms for causal inference and study their finite-sample performance through simulation experiments under various scenarios. Application to the percutaneous coronary intervention (PCI) data shows that these adaptations can improve simple linear regression-based methods.

Analysis of Online Behavior and Prediction of Learning Performance in Blended Learning Environments

  • JO, Il-Hyun;PARK, Yeonjeong;KIM, Jeonghyun;SONG, Jongwoo
    • Educational Technology International
    • /
    • v.15 no.2
    • /
    • pp.71-88
    • /
    • 2014
  • A variety of studies to predict students' performance have been conducted since educational data such as web-log files traced from Learning Management System (LMS) are increasingly used to analyze students' learning behaviors. However, it is still challenging to predict students' learning achievement in blended learning environment where online and offline learning are combined. In higher education, diverse cases of blended learning can be formed from simple use of LMS for administrative purposes to full usages of functions in LMS for online distance learning class. As a result, a generalized model to predict students' academic success does not fulfill diverse cases of blended learning. This study compares two blended learning classes with each prediction model. The first blended class which involves online discussion-based learning revealed a linear regression model, which explained 70% of the variance in total score through six variables including total log-in time, log-in frequencies, log-in regularities, visits on boards, visits on repositories, and the number of postings. However, the second case, a lecture-based class providing regular basis online lecture notes in Moodle show weaker results from the same linear regression model mainly due to non-linearity of variables. To investigate the non-linear relations between online activities and total score, RF (Random Forest) was utilized. The results indicate that there are different set of important variables for the two distinctive types of blended learning cases. Results suggest that the prediction models and data-mining technique should be based on the considerations of diverse pedagogical characteristics of blended learning classes.

Is it possible to forecast KOSPI direction using deep learning methods?

  • Choi, Songa;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.4
    • /
    • pp.329-338
    • /
    • 2021
  • Deep learning methods have been developed, used in various fields, and they have shown outstanding performances in many cases. Many studies predicted a daily stock return, a classic example of time-series data, using deep learning methods. We also tried to apply deep learning methods to Korea's stock market data. We used Korea's stock market index (KOSPI) and several individual stocks to forecast daily returns and directions. We compared several deep learning models with other machine learning methods, including random forest and XGBoost. In regression, long short term memory (LSTM) and gated recurrent unit (GRU) models are better than other prediction models. For the classification applications, there is no clear winner. However, even the best deep learning models cannot predict significantly better than the simple base model. We believe that it is challenging to predict daily stock return data even if we use the latest deep learning methods.

A neural network with local weight learning and its application to inverse kinematic robot solution (부분 학습구조의 신경회로와 로보트 역 기구학 해의 응용)

  • 이인숙;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.36-40
    • /
    • 1990
  • Conventional back propagation learning is generally characterized by slow and rather inaccurate learning which makes it difficult to use in control applications. A new multilayer perception architecture and its learning algorithm is proposed that consists of a Kohonen front layer followed by a back propagation network. The Kohonen layer selects a subset of the hidden layer neurons for local tuning. This architecture has been tested on the inverse kinematic solution of robot manipulator while demonstrating its fast and accurate learning capabilities.

  • PDF

Strategical Approaches for Establishing Learning Organization: S-Steel Case (철강산업의 학습조직 구축을 위한 전략적 접근 : S-철강(제조업) 사례연구)

  • Park, Gi-Ho
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.377-384
    • /
    • 2007
  • This paper is about how to establish the strategic teaming organization in digital age. Through the case study of action teaming, this research can give some implications to small-sized organizations who want to establish teaming culture and positive activities in their own companies. The case site was S-steel, which belongs to the steel industry. To improve and drive teaming activities, I made use of skills: action learning, fishbone analysis, creative thinking, brainstorming, creative discussion skill, and organization diagnostic method.

  • PDF

A Prediction of Work-life Balance Using Machine Learning

  • Youngkeun Choi
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.209-225
    • /
    • 2024
  • This research aims to use machine learning technology in human resource management to predict employees' work-life balance. The study utilized a dataset from IBM Watson Analytics in the IBM Community for the machine learning analysis. Multinomial dependent variables concerning workers' work-life balance were examined, categorized into continuous and categorical types using the Generalized Linear Model. The complexity of assessing variable roles and their varied impact based on the type of model used was highlighted. The study's outcomes are academically and practically relevant, showcasing how machine learning can offer further understanding of psychological variables like work-life balance through analyzing employee profiles.