The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.3
/
pp.127-133
/
2019
Most studies of software fault prediction have been about supervised learning models that use only labeled training data. Although supervised learning usually shows high prediction performance, most development groups do not have sufficient labeled data. Unsupervised learning models that use only unlabeled data for training are difficult to build and show poor performance. Semi-supervised learning models that use both labeled data and unlabeled data can solve these problems. Self-training technique requires the fewest assumptions and constraints among semi-supervised techniques. In this paper, we implemented several models using self-training algorithms and evaluated them using Accuracy and AUC. As a result, YATSI showed the best performance.
This study evaluated the content of Korean vocabulary learning applications with a focus on tablet PC applications. We analyzed 51 Korean vocabulary learning applications. The instruments in this study were developed based on Yoo et al. (2012)' Vocabulary Learning Game Application Evaluation Criteria and Hyun et al. (2013)' Educational Application Evaluation Criteria. Data were analyzed using a t-test and one-way analysis of variance. The main results are as follows. First, each criteria's score was fairly good; the ease of use had the highest scores and the amusement had the lowest scores. Second, there was a significant difference in the interaction by vocabulary teaching approach. Applications based on a whole language-teaching method had higher scores than applications based on a phonics instructional teaching method inducing more operation and with immediate feedback. Third, there was significant difference in the sum of score and each criteria of developmental appropriateness, educational values, amusement, function and interaction by type of learning. Applications of combining type had higher scores in every criteria except for ease of use than applications of description type. These findings provide a preliminary evidence that the systematic Korean vocabulary learning application facilitates preschoolers' vocabulary learning.
Portfolios have gained attention in medical education as a tool for promoting student learning and assessment since Miller's call for better tools for assessing students' clinical competencies. This paper reviews the development and use of e-portfolios for promoting learning and assessment in medical schools, both domestically in Korea and internationally. This review finds that some specific features need to be incorporated into e-portfolio systems for medical education and that these systems can be used to manage student learning in clinical clerkships and to support competency-based assessment. The author asserts that the e-portfolio is key to promoting competency-based education and suggests practical tips for effective development and use of e-portfolios in Korean medical schools.
In this study, we try to detect anomalies on the network intrusion detection system by learning only one class. We use KDD CUP 1999 dataset, an intrusion detection dataset, which is used to evaluate classification performance. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve relatively high classification efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data. In this study, we use one class classifiers based on support vector machines and density estimation to detect new unknown attacks. The test using the classifier based on density estimation has shown relatively better performance and has a detection rate of about 96% while maintaining a low FPR for the new attacks.
Journal of the Korea Society of Computer and Information
/
v.26
no.2
/
pp.61-68
/
2021
Recently, various technologies that use machine learning to classify malicious code have been studied. In order to enhance the effectiveness of machine learning, it is most important to extract properties to identify malicious codes and normal binaries. In this paper, we propose a feature extraction method for use in machine learning using recursive methods. The proposed method selects the final feature using recursive methods for individual features to maximize the performance of machine learning. In detail, we use the method of extracting the best performing features among individual feature at each stage, and then combining the extracted features. We extract features with the proposed method and apply them to machine learning algorithms such as Decision Tree, SVM, Random Forest, and KNN, to validate that machine learning performance improves as the steps continue.
This study investigated the effects of collocation-based vocabulary instruction for the experimental group (G2). It was compared to the traditional wordlist-based vocabulary instruction for the control group (G1). This results reflect the development of low level high school EFL learners' vocabulary learning strategy use and the positive change in the affective domain. In the analysis of the survey responses, G1 and G2 did not differ significantly on the first questionnaire. They did, however, differ significantly on the second questionnaire. G2 used more strategies to discover and to consolidate the meaning of the words by means of combining words. In terms of the affective domain, G2 participated more actively in the learning activities, which had a significant effect on vocabulary growth, memory, self-confidence, motivation, and cooperative learning. This is attributable to the fact that G2 was more inquisitive, interested, challenged, participatory, cooperative, and attentive than G1 in performing the vocabulary task activities. Moreover, the data collected from the questionnaire showed that G2 performed more interactive and dynamic activities in solving the given tasks.
Kounlaxay, Kalaphath;Shim, Yoonsik;Kang, Shin-Jin;Kwak, Ho-Young;Kim, Soo Kyun
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.3
/
pp.1015-1029
/
2021
Modern technology offers many ways to enhance teaching and learning that in turn promote the development of tools for educational activities both inside and outside the classroom. Many educational programs using the augmented reality (AR) technology are being widely used to provide supplementary learning materials for students. This paper describes the potential and challenges of using GeoGebra AR in mathematical studies, whereby students can view 3D geometric objects for a better understanding of their structure, and verifies the feasibility of its use based on experimental results. The GeoGebra software can be used to draw geometric objects, and 3D geometric objects can be viewed using AR software or AR applications on mobile phones or computer tablets. These could provide some of the required materials for mathematical education at high schools or universities. The use of the GeoGebra application for education in Laos will be particularly discussed in this paper.
The purpose of this study was to analyze the current status of team learning in engineering education. For this, literature review and survey were used. The survey was conducted with 16 professors and 627 students in engineering college. Based on the results, team should be organized in consideration of various characteristics and competencies for effective team learning activities in engineering education. And in the team learning operations, it is necessary to make the conditions for students to immerse in team learning through the activation of communication of team members, tightening management of free riding in team learning, and optimizing team learning period. It is necessary to use the team learning evaluation method in harmony with the team, individual and peer evaluation.
Land use statistics calculation is very informative data as the activity data for calculating exact carbon absorption and emission in post-2020. To effective interpretation by land use category, This study classify automatically image interpretation by land use category applying forest aerial photography (FAP) to deep learning model and calculate national unit statistics. Dataset (DS) applied deep learning is divided into training dataset (training DS) and test dataset (test DS) by extracting image of FAP based national forest resource inventory permanent sample plot location. Training DS give label to image by definition of land use category and learn and verify deep learning model. When verified deep learning model, training accuracy of model is highest at epoch 1,500 with about 89%. As a result of applying the trained deep learning model to test DS, interpretation classification accuracy of image label was about 90%. When the estimating area of classification by category using sampling method and compare to national statistics, consistency also very high, so it judged that it is enough to be used for activity data of national GHG (Greenhouse Gas) inventory report of LULUCF sector in the future.
This paper presents a new benchmark system for visual odometry (VO) and monocular depth estimation (MDE). As deep learning has become a key technology in computer vision, many researchers are trying to apply deep learning to VO and MDE. Just a couple of years ago, they were independently studied in a supervised way, but now they are coupled and trained together in an unsupervised way. However, before designing fancy models and losses, we have to customize datasets to use them for training and testing. After training, the model has to be compared with the existing models, which is also a huge burden. The benchmark provides input dataset ready-to-use for VO and MDE research in 'tfrecords' format and output dataset that includes model checkpoints and inference results of the existing models. It also provides various tools for data formatting, training, and evaluation. In the experiments, the exsiting models were evaluated to verify their performances presented in the corresponding papers and we found that the evaluation result is inferior to the presented performances.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.