• Title/Summary/Keyword: use for information

Search Result 27,363, Processing Time 0.06 seconds

Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning (GEMS 영상과 기계학습을 이용한 산불 연기 탐지)

  • Jeong, Yemin;Kim, Seoyeon;Kim, Seung-Yeon;Yu, Jeong-Ah;Lee, Dong-Won;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.967-977
    • /
    • 2022
  • The occurrence and intensity of wildfires are increasing with climate change. Emissions from forest fire smoke are recognized as one of the major causes affecting air quality and the greenhouse effect. The use of satellite product and machine learning is essential for detection of forest fire smoke. Until now, research on forest fire smoke detection has had difficulties due to difficulties in cloud identification and vague standards of boundaries. The purpose of this study is to detect forest fire smoke using Level 1 and Level 2 data of Geostationary Environment Monitoring Spectrometer (GEMS), a Korean environmental satellite sensor, and machine learning. In March 2022, the forest fire in Gangwon-do was selected as a case. Smoke pixel classification modeling was performed by producing wildfire smoke label images and inputting GEMS Level 1 and Level 2 data to the random forest model. In the trained model, the importance of input variables is Aerosol Optical Depth (AOD), 380 nm and 340 nm radiance difference, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), formaldehyde (HCHO), nitrogen dioxide (NO2), 380 nm radiance, and 340 nm radiance were shown in that order. In addition, in the estimation of the forest fire smoke probability (0 ≤ p ≤ 1) for 2,704 pixels, Mean Bias Error (MBE) is -0.002, Mean Absolute Error (MAE) is 0.026, Root Mean Square Error (RMSE) is 0.087, and Correlation Coefficient (CC) showed an accuracy of 0.981.

The Study of Dietary Habits and Health Behaviors according to Nutrition Label Utilization in Korean Adolescents: Based on the 2016-2018 Korea National Health and Nutrition Examination Survey (한국 청소년의 영양표시 이용에 따른 식생활 및 건강행태: 2016-2018년 국민건강영양조사 자료를 활용하여)

  • Kim, Jin-A;Lee, Sim-Yeol
    • Journal of Korean Home Economics Education Association
    • /
    • v.33 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • This study evaluated the dietary habits and health behaviors of Korean adolescents according to their nutrition label utilization. This study was conducted on the adolescents aged between 12 and 18 who participated in the 2016-2018 National Health and Nutrition Examination Survey. Subjects were classified into nutrition label utilizing group and non-utilizing group. Then the general information, diet habit and nutrient intakes, health status and obesity and mental health of the two groups were analyzed. There was no significant difference in skipping breakfast, frequency of eating out, smoking status and alcohol drinking status according to the utilization of nutrition labels. Nutrition label utilizing group had higher % KDRI of protein(p<0.05), calcium (p<0.01), phosphorus(p<0.01) and potassium intakes(p<0.01) than non-utilizing group. Nutrition label utilizing group had higher EQ-5D score(0.97) than non-utilizing group(p<0.001). Practical nutrition education using nutrition label is needed. So these results can be useful for supporting dietary education regarding use of nutrition label for adolescents.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

Evaluation of Practical Requirements for Automated Detailed Design Module of Interior Finishes in Architectural Building Information Model (건축 내부 마감부재의 BIM 기반 상세설계 자동화를 위한 실무적 요구사항 분석)

  • Hong, Sunghyun;Koo, Bonsang;Yu, Youngsu;Ha, Daemok;Won, Youngkwon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.5
    • /
    • pp.87-97
    • /
    • 2022
  • Although the use of BIM in architectural projects has increased, repetitive modeling tasks and frequent design errors remain as obstacles to the practical application of BIM. In particular, interior finishing elements include the most varied and detailed requirements, and thus requires improving its modelling efficiency and resolving potential design errors. Recently, visual programming-based modules has gained traction as a way to automate a series of repetitive modeling tasks. However, existing approaches do not adequately reflect the practical modeling needs and focus only on replacing siimple, repetitive tasks. This study developed and evaluated the performance of three modules for automatic detailing of walls, floors and ceilings. The three elements were selected by analyzing the man-hours and the number of errors that typically occur when detailing BIM models. The modules were then applied to automatically detail a sample commercial facility BIM model. Results showed that the implementations met the practical modeling requirements identified by actual modelers of an construction management firm.

Development of Automated Statistical Analysis Tool using Measurement Data in Cable-Supported Bridges (특수교 계측 데이터 자동 통계 분석 툴 개발)

  • Kim, Jaehwan;Park, Sangki;Jung, Kyu-San;Seo, Dong-Woo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.79-88
    • /
    • 2022
  • Cable-supported bridges, as important large infrastructures, require a long-term and systematic maintenance strategy. In particular, various methods have been proposed to secure safety for the bridges, such as installing various types of sensor on members in the bridges, and setting management thresholds. It is evidently necessary to propose a strategic plan to efficiently manage increasing number of cable-supported bridges and data collected from a number of sensors. This study aims to develop an analysis tool that can automatically remove abnormal signals and calculate statistical results for the purpose of efficiently analyzing a wide range of data collected from a long span bridge measurement system. To develop the tool, basic information such as the types and quantity of sensors installed in long span bridges and signal characteristics of the collected data were analyzed. Thereafter, the Humpel filtering method was used to determine the presence or absence of an abnormality in the signal and then filtered. The statistical results with filtered data were shown. Finally, one cable-stayed bridge and one suspension bridge currently in use were chosen as the target bridges to verify the performance of the developed tool. Signal processing and statistical analysis with the tool were performed. The results are similar to the results reported in the existing work.

Analysis on Filter Bubble reinforcement of SNS recommendation algorithm identified in the Russia-Ukraine war (러시아-우크라이나 전쟁에서 파악된 SNS 추천알고리즘의 필터버블 강화현상 분석)

  • CHUN, Sang-Hun;CHOI, Seo-Yeon;SHIN, Seong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.25-30
    • /
    • 2022
  • This study is a study on the filter bubble reinforcement phenomenon of SNS recommendation algorithm such as YouTube, which is a characteristic of the Russian-Ukraine war (2022), and the victory or defeat factors of the hybrid war. This war is identified as a hybrid war, and the use of New Media based on the SNS recommendation algorithm is emerging as a factor that determines the outcome of the war beyond political leverage. For this reason, the filter bubble phenomenon goes beyond the dictionary meaning of confirmation bias that limits information exposed to viewers. A YouTube video of Ukrainian President Zelensky encouraging protests in Kyiv garnered 7.02 million views, but Putin's speech only 800,000, which is a evidence that his speech was not exposed to the recommendation algorithm. The war of these SNS recommendation algorithms tends to develop into an algorithm war between the US (YouTube, Twitter, Facebook) and China (TikTok) big tech companies. Influenced by US companies, Ukraine is now able to receive international support, and in Russia, under the influence of Chinese companies, Putin's approval rating is over 80%, resulting in conflicting results. Since this algorithmic empowerment is based on the confirmation bias of public opinion by 'filter bubble', the justification that a new guideline setting for this distortion phenomenon should be presented shortly is drawing attention through this Russia-Ukraine war.

A Study on the Prediction Models of Used Car Prices for Domestic Brands Using Machine Learning (머신러닝을 활용한 브랜드별 국내 중고차 가격 예측 모델에 관한 연구)

  • Seungjun Yim;Joungho Lee;Choonho Ryu
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.105-126
    • /
    • 2023
  • The domestic used car market continues to grow along with the used car online platform service. The used car online platform service discloses vehicle specifications, accident history, inspection history, and detailed options to service consumers. Most of the preceding studies were predictions of used car prices using vehicle specifications and some options for vehicles. As a result of the study, it was confirmed that there was a nonlinear relationship between used car prices and some specification variables. Accordingly, the researchers tried to solve the nonlinear problem by executing a Machine Learning model. In common, the Regression based Machine Learning model had the advantage of knowing the actual influence and direction of variables, but there was a disadvantage of low Cost Function figures compared to the Decision Tree based Machine Learning model. This study attempted to predict used car prices of six domestic brands by utilizing both vehicle specifications and vehicle options. Through this, we tried to collect the advantages of the two types of Machine Learning models. To this end, we sequentially conducted a regression based Machine Learning model and a decision tree based Machine Learning model. As a result of the analysis, the practical influence and direction of each brand variable, and the best tree based Machine Learning model were selected. The implications of this study are as follows. It will help buyers and sellers who use used car online platform services to predict approximate used car prices. And it is hoped that it will help solve the problem caused by information inequality among users of the used car online platform service.

General Relation Extraction Using Probabilistic Crossover (확률적 교차 연산을 이용한 보편적 관계 추출)

  • Je-Seung Lee;Jae-Hoon Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.371-380
    • /
    • 2023
  • Relation extraction is to extract relationships between named entities from text. Traditionally, relation extraction methods only extract relations between predetermined subject and object entities. However, in end-to-end relation extraction, all possible relations must be extracted by considering the positions of the subject and object for each pair of entities, and so this method uses time and resources inefficiently. To alleviate this problem, this paper proposes a method that sets directions based on the positions of the subject and object, and extracts relations according to the directions. The proposed method utilizes existing relation extraction data to generate direction labels indicating the direction in which the subject points to the object in the sentence, adds entity position tokens and entity type to sentences to predict the directions using a pre-trained language model (KLUE-RoBERTa-base, RoBERTa-base), and generates representations of subject and object entities through probabilistic crossover operation. Then, we make use of these representations to extract relations. Experimental results show that the proposed model performs about 3 ~ 4%p better than a method for predicting integrated labels. In addition, when learning Korean and English data using the proposed model, the performance was 1.7%p higher in English than in Korean due to the number of data and language disorder and the values of the parameters that produce the best performance were different. By excluding the number of directional cases, the proposed model can reduce the waste of resources in end-to-end relation extraction.

Shielding Performance of PLA and Tungsten Mixture using Research Extruder (연구용 압출기를 활용한 PLA와 텅스텐 혼합물의 차폐 성능)

  • Do-Seong Kim;Tae-Hyung Kim;Myeong-Seong Yoon;Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.4
    • /
    • pp.557-564
    • /
    • 2023
  • In this study, 3D printing technology was used to compensate for the shortcomings of the use of lead, which has proven to have excellent shielding performance, and to control unnecessary human exposure. 3D printers can implement three-dimensional shapes and can immediately apply individual ideas, which has great advantages in maintaining technology supplementation while reducing the cost and duration of prototyping. Among the various special 3D printers, the FDM method was adopted, and the filament used for output was manufactured using a research extruder by mixing two materials, PLA (Poly-Lactic-Acid) and tungsten. The purpose was to verify the validity through dose evaluation and to provide basic information on the production of chapezones of various materials. The mixed filament was implemented as a morphological shield. Filaments made of a research extruder by mixing PLA and tungsten were divided into 10 %, 20 %, 30 %, 40 %, and 50 % according to the tungsten content ratio. Through the process of 3D Modeling, STL File storage, G-code generation, and output, 10 cm × 10 cm × 0.5 cm was manufactured, respectively, and dose and shielding ability were evaluated under the conditions of tube voltages of 60 kVp, 80 kVp, 100 kVp, 120 kVp, and tube currents of 20 mAs and 40 mAs.

Estimating Land Assets in North Korea: Framework Development & Exploratory Application (북한지역 토지자산 추정에 관한 연구: 프레임워크 개발 및 탐색적 적용)

  • Lim, Song
    • Economic Analysis
    • /
    • v.27 no.2
    • /
    • pp.71-123
    • /
    • 2021
  • In this study, we present a methodology and model to estimate land prices and the value of land assets in North Korea in the absence of any data about land characteristics from North Korean authorities. Using this framework, we experimentally make market price-based estimates for land assets across the entire urban area of North Korea. First, we estimate the determinants of land prices in South Korea using data on market prices of land from the late 1970s, when it was estimated that the income level gap between South Korea and North Korea wasn't relatively large, and from the early 1980s, when urbanization levels in both of them were similar. Second, we calculate land prices and their relative ratios for each city and urban area in North Korea around 2015 by substituting proxy variables of determinants of land prices derived through a geographic information analysis of North Korea into the function of land prices that we have already estimated. Finally, we estimate the value of land assets in urban areas across North Korea by combining the ratio of housing transaction prices surveyed in several cities in North Korea with the relative prices estimated in this research. As a result, land prices in urban areas in North Korea, looking at the relative ratio of price by city, are estimated to be the highest, at 100.00, in Tongdaewon district of Pyongyang, and to be the lowest, at 1.70, in Phungso county, Ryanggang Province. Meanwhile, the value of land assets in urbanized areas was estimated at $21.6 billion in 2015, which was 1.2 to 1.3 times the GDP of North Korea that year. This ratio is similar to South Korea's in the 1978-1980 period, when the South Korean economy grew at an average rate of 6%. Considering North Korea's growth rate of about 1% in the 2013-2014 period, its ratio of land assets to GDP appears very high.