• Title/Summary/Keyword: urban vulnerability

Search Result 152, Processing Time 0.025 seconds

Policies for Improving Thermal Environment Using Vulnerability Assessment - A Case Study of Daegu, Korea - (열취약성 평가를 통한 열환경 개선 정책 제시 - 대구광역시를 사례로 -)

  • KIM, Kwon;EUM, Jeong-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.1-23
    • /
    • 2018
  • This study aims to propose a way for evaluating thermal environment vulnerability associated with policy to improve thermal environment. For this purpose, a variety of indices concerning thermal vulnerability assessment and adaptation policies for climate change applied to 17 Korean cities were reviewed and examined. Finally, 15 indices associated with policies for improving thermal environment were selected. The selected indices for thermal vulnerability assessment were applied to Daegu Metropolitan City of South Korea as a case study. As results, 15 vulnerability maps based on the standardized indices were established, and a comprehensive map with four grades of thermal vulnerability were established for Daegu Metropolitan City. As results, the area with the highest rated area in the first-grade(most vulnerable to heat) was Dong-gu, followed by Dalseo-gu and Buk-gu, and the highest area ratio of the first-grade regions was Ansim-1-dong in Dong-gu. Based on the standardized indices, the causes of the thermal environment vulnerability of Ansim-1-dong were accounted for the number of basic livelihood security recipients, the number of cardiovascular disease deaths, heat index, and Earth's surface temperature. To improve the thermal environment vulnerability of Ansim-1-dong, active policy implementation is required in expansion and maintenance of heat wave shelters, establishment of database for the population with diseases susceptible to high temperature environments, expansion of shade areas and so on. This study shows the applicability of the vulnerability assessment method linked with the policies and is expected to contribute to the strategic and effective establishment of thermal environment policies in urban master district plans.

Heavy Snow Vulnerability in South Korea Using PSR and DPSIR Methods (PSR과 DPSIR을 이용한 대한민국 대설 취약성 분석)

  • Keunwoo Lee;Hyeongjoo Lee;Gunhui Chung
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.345-352
    • /
    • 2023
  • Recently, the risk of snow disasters has been increasing South Korea. The damages of heavy snow were categorized into direct and indirect. Direct damage is usually the collapse of buildings as houses, greenhouse or barns. Indirect damage is various, for example, traffic congestion, traffic acident, drop damage, and so on. In South Korea, direct damage is severe in rural area, mosty collapse of greenhouse or barns. However, indirect damage such as traffic accident is mostly occurred in urban area. Therefore, the regional characteristics should be considered when vulnerability is evaluated. Therefore, in this study, the PSR and DPSIR method were applied by regional scale in South Korea. The PSR evaluation method is divided into pressure, state, and reaction index. however, the DPSIR evaluation method is divided into Driving force, Pressure, State, Impact, and Response index. the DPSIR evaluation method is divided into Driving force, Pressure, State, Impact, and Response index. Data corresponding to each indicator were collected, and the weight was calculated using the entropy method to calculate the snowfall vulnerability index by regional scale in South Korea. Calculated heavy snow damage vulnerabilities from the two methods were compared. The calculated vulnerabilities were validated using the recent snow damage in South Korea from 2018 to 2022. Snow vulnerability index calculated using the DPSIR method showed more reliable results. The results of this study could be utilized as an information to prepare the mitigation of heavy snow damage and to establish an efficient snow removal response system.

A Study on the Vulnerability Assessment of Solar Power Generation Facilities Considering Disaster Information (재해정보를 고려한 태양광발전시설의 취약성 평가에 관한 연구)

  • Heejin Pyo
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.57-71
    • /
    • 2024
  • This study aims to develop an evaluation method for solar power facilities considering disaster impacts and to analyse the vulnerabilities of existing facilities. Haenam-gun in Jeollanam-do, where the reassessment of existing facilities is urgent, was selected as the study area. To evaluate the vulnerability from a more objective perspective, principal component analysis and entropy methods were utilised. Seven vulnerability assessment indicators were selected: maximum hourly rainfall, maximum wind speed, number of typhoon occurrence days, number of rainfall days lasting more than five days, maximum daily rainfall, impermeable area ratio, and population density. Among these, maximum hourly rainfall, maximum wind speed, maximum daily rainfall, and number of rainfall days lasting more than five days were found to have the highest weights. The overlay of the derived weights showed that the southeastern regions of Haenam-eup and Bukil-myeon were classified as Grade 1 and 2, whereas the northern regions of Hwawon-myeon, Sani-myeon, and Munnae-myeon were classified as Grade 4 and 5, indicating differences in vulnerability. Of the 2,133 facilities evaluated, 91.1% were classified as Grade 3 or higher, indicating a generally favourable condition. However, there were more Grade 1 facilities than Grade 2, highlighting the need for countermeasures. This study is significant in that it evaluates solar power facilities considering urban disaster resilience and is expected to be used as a basic resource for the installation of new facilities or the management and operation of existing ones.

Assessing Community Resilience in Rural Regions Using the Analytic Hierarchy Process Method (AHP 기법을 이용한 농촌 커뮤니티 리질리언스 지표 도출 연구)

  • Kim, Eun-Sol;Lee, Jae-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.1
    • /
    • pp.37-47
    • /
    • 2022
  • The purpose of this study is to introduce the concept of community resilience to rural society and build an index suitable for the reality of rural areas. Furthermore, by calculating the importance of evaluation factors, it was attempted to present priorities and alternatives for each evaluation factor. By stratifying the derived indicators, a survey was conducted targeting 20 researchers, practitioners, and public officials, three groups of experts working in rural areas who were well aware of the realities and problems of rural areas. In the survey, a pairwise comparison was performed to compare factors 1:1 to calculate the importance, and for rational and consistent decision-making, decisions were made in the 9-grade section. Using the collected data, consistency analysis that can evaluate reliability in the decision-making process and the relative weight of evaluation factors were calculated through AHP analysis. As a result of the analysis, as a result of examining the priority of final importance by summarizing the importance of all evaluation factors, 'Income creation using resources' > 'Population Characteristics' > 'Tolerance' > 'External Support' > 'Social Accessibility' > 'Physical Accessibility' > 'Community Competence' > 'Infrastructure' > 'Leader Competence' > 'Natural Environment' was derived in the order. In the study dealing with urban community resilience indicators, social aspects such as citizen participation, public-private cooperation, and governance were presented as the most important requirements, but this study differs in that the 'income creation' factor is derived as the most important factor. This can be seen through the change in the income difference between rural and urban areas. The income structure of rural areas has changed rapidly, and it is now reaching a very poor level, so it is necessary to prepare alternatives to 'income creation' in the case of rural areas. Unlike urban indicators, 'population characteristics' and 'tolerance' were also derived as important indicators of rural society. However, there are currently no alternatives to supplement the vulnerability by strengthening the resilience of rural communities. Based on the priority indicators derived from the study, we tried to suggest alternatives necessary for rural continuity in the future so that they can be supplemented step by step.

Assessing Groundwater Vulnerability Using DRASTIC Method and Groundwater Quality in Changwon City (DRASTIC과 지하수 수질에 의한 창원시 지하수 오염취약성 평가)

  • Hamm Se-Yeong;Cheong Jae-Yeol;Kim Moo-Jin;Kim In-Soo;Hwang Han-Seok
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.631-645
    • /
    • 2004
  • This study assesses groundwater vulnerability to contaminants in industrial and residential/commercial areas of the city of Changwon, using DRASTIC technique and groundwater data. The DRASTIC technique was originally applied to situations in which the contamination sources are at the ground surface, and the contaminants flow into the groundwater with infiltration of rainfall. Mostly the industrial area has higher DRASTIC indices than the residential/commercial area. However, a part of the residential/commercial area having much groundwater production and great drawdown is more contaminated in groundwater than other industrial and the residential/commercial areas even if it has lowest DRASTIC indices in the study area. It indicates that groundwater contamination in urban areas can be closely related to excessive pumping resulting in a lowering of the water level. The correlation coefficient between minimum DRASTIC indices and the degree of poor water quality for 10 districts is as low as 0.40. On the other hand, the correlation coefficients between minimum DRASTIC indices and the groundwater discharge rate, and between minimum DRASTIC indices and well distribution density per unit area are 0.70 and 0.87, respectively. Thus, to evaluate the potential of groundwater contamination in urban areas, it is necessary to consider other human-made factors such as groundwater withdrawal rate and well distribution density per unit area as well as the existing seven DRASTIC factors.

Traffic Vulnerability Analysis of Rural Area using Road Accessibility and Functionality in Cheongju City (도로 접근성과 기능성을 이용한 통합청주시 농촌지역의 교통 취약성 분석)

  • Jeon, Jeongbae;Oh, Hyunkyo;Park, Jinseon;Yoon, Seongsoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.2
    • /
    • pp.11-21
    • /
    • 2015
  • This study carried out evaluation of vulnerability in accessability and functionality using road network that was extracted from Intelligent Transportation System(ITS) and digital map. It was built in order to figure out accessability that locational data which include community center, public facilities, medical facilities and highway IC. The method for grasping functionality are Digital Elevation Model(DEM) and land slide hazard map provided by Korea Forest Service. The evaluation criteria for figure out accessability was set to related comparison of average time in urban area. Functionality value was calculated by the possibility of backing the vehicle possibility of snowfall and landslides. At last, this research computed weighting value through Analytic Hierarchy Process (AHP), calculated a vulnerable score. As the result, the accessability of rural village came out that would spend more time by 1.4 to 3.2 times in comparison with urban area. Even though, vulnerability of the road by a snowfall was estimated that more than 50% satisfies the first class, however, it show up that the road were still vulnerable due snowing because over the 14% of the road being evaluated the fifth class. The functionality has been satisfied most of the road, however, It was vulnerable around Lake Daechung and Piban-ryung, Yumti-jae, Suriti-jae where on the way Boeun. Also, the fifth class road are about 35 km away from the city hall on distance, take an hour to an hour and a half. The fourth class road are about 25 km away from the city hall on distance, take 25 min to an hour. The other class of the road take in 30 min from the city hall or aren't affected of weather and have been analyzed that a density of road is high. In A result that compare between distribution and a housing density came out different the southern and the eastern area, so this result could be suggested quantitative data for possibility of development.

Assessing Conservation Priority of Private Land in Unexecuted Urban Parks in Seoul Using Betweenness Centrality Analysis (매개중심성 분석을 활용한 서울시 미집행공원 내 사유지 보전 우선순위 평가)

  • Hwang, Byungmook;Ko, Dongwook W.;Kang, Wanmo
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.22-34
    • /
    • 2021
  • The implementation of the sunset provision of unexecuted urban parks in Seoul has been postponed; however, the mentioned parks still remain vulnerable since they can be subject to development under certain circumstances. Local governments may purchase the parks to prevent their loss but are constrained due to limited resources. The purpose of this study is to prioritize the purchase of unexecuted urban parks in Seoul based on landscape connectivity, which represents the important role of allowing the movement of wildlife and providing biodiversity in urban environments. In this study, we used four potential scenarios (PB100, PB1, PA100, PA1), which reflects the degree of land cover change resulting from the implementation of the sunset provision, and the role of Han River as a conduit or barrier for wildlife movement. Landscape connectivity was evaluated by calculating current flow betweenness centrality (CFBC). This was used to rank the importance of the unexecuted urban parks in Seoul. The results demonstrated that the implementation of the sunset provision will greatly decrease the connectivity of all parks in Seoul and particularly more so for parks in the southern part of the city. In addition, the results suggested that the low connectivity of Han river will diminish the connectivity around Bukhansan Mountain in the northern part of Seoul. Our study can be used for the prioritization of purchase, since it has the ability to evaluate the anticipated vulnerability of each park's connectivity after the sunset provision.

A Study for the Computer Simulation on the Flood Prevention Function of the Extensive Green Roof in Connection with RCP 8.5 Scenarios (RCP 8.5 시나리오와 연동한 저관리형 옥상녹화시스템의 수해방재 성능에 대한 전산모의 연구)

  • Kim, Tae Han;Park, Sang Yeon;Park, Eun Hee;Jang, Seung Wan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • Recently, major cities in Korea are suffering from frequent urban flooding caused by heavy rainfall. Such urban flooding mainly occurs due to the limited design capacity of the current drainage network, which increases the vulnerability of the cities to cope with intense precipitation events brought about by climate change. In other words, it can be interpreted that runoff exceeding the design capacity of the drainage network and increased impervious surfaces in the urban cities can overburden the current drainage system and cause floods. The study presents the green roof as a sustainable solution for this issue, and suggests the pre-design using the LID controls model in SWMM to establish more specific flood prevention system. In order to conduct the computer simulation in connection with Korean climate, the study used the measured precipitation data from Cheonan Station of Korea Meteorological Administration (KMA) and the forecasted precipitation data from RCP 8.5 scenario. As a result, Extensive Green Roof System reduced the peak runoff by 53.5% with the past storm events and by 54.9% with the future storm events. The runoff efficiency was decreased to 4% and 7%. This results can be understood that Extensive Green Roof System works effectively in reducing the peak runoff instead of reducing the total stormwater runoff.

Heatwave Vulnerability Analysis of Construction Sites Using Satellite Imagery Data and Deep Learning (인공위성영상과 딥러닝을 이용한 건설공사현장 폭염취약지역 분석)

  • Kim, Seulgi;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.263-272
    • /
    • 2022
  • As a result of climate change, the heatwave and urban heat island phenomena have become more common, and the frequency of heatwaves is expected to increase by two to six times by the year 2050. In particular, the heat sensation index felt by workers at construction sites during a heatwave is very high, and the sensation index becomes even higher if the urban heat island phenomenon is considered. The construction site environment and the situations of construction workers vulnerable to heat are not improving, and it is now imperative to respond effectively to reduce such damage. In this study, satellite imagery, land surface temperatures (LST), and long short-term memory (LSTM) were applied to analyze areas above 33 ℃, with the most vulnerable areas with increased synergistic damage from heat waves and the urban heat island phenomena then predicted. It is expected that the prediction results will ensure the safety of construction workers and will serve as the basis for a construction site early-warning system.

Spatial Strategies of Inclusive Cities through Vulnerability Evaluation - Focused on Busan - (취약성 평가를 통한 포용도시의 공간적 전략 - 부산광역시를 대상으로 -)

  • Kang, Youn Won;Kim, Jong Gu;Shin, Eun Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.281-286
    • /
    • 2019
  • In recent days, efforts have been made voraciously to create urban spaces where everyone can enjoy an equal life by integrating the socially underprivileged groups including women, children, the elderly, etc. In order to create a inclusive city that accepts everyone regardless of social hierarchy, it is necessary to plan the city by incorporating the marginalized. The purpose of this study is to establish the strategy of inclusive city in each region. To accomplish the goal, we analyze and compile each of the studies that were scattered and make an integrated evaluation index, and evaluate the inclusivity for each region by these indicators.