• Title/Summary/Keyword: urban stormwater

Search Result 170, Processing Time 0.026 seconds

Development and Evaluation of Bioretention Treating Stormwater Runoff from a Parking Lot (주차장 비점오염원 관리를 위한 식생체류지 개발 및 평가)

  • Yu, Gigyung;Choi, Jiyeon;Hong, Jungsun;Moon, Soyeon;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.221-227
    • /
    • 2015
  • Urbanization increases the impervious cover, which affects the discharge of stormwater runoff and non-point source pollutants to the waterbodies. In order to improve the water quality and restore the aqua-ecosystem, the Ministry of Environment (MOE), Korea MOE introduced the Low Impact Development(LID) techniques on development projects. Therefore, research was performed to develop the bioretention technology for managing the stormwater runoff from urban areas. The test-bed was established on 2013 up to evaluate the performance of pollutant and runoff reduction. A total of 11 storm events have been monitored from November 2013 to present. Even though the SA/CA (surface area of bioretention/catchment area) is approximately 2.2%, the facility shows high pollutant and runoff reduction during storm events by increasing retention and infiltration capacities. The bioretention shows a 100% total runoff reduction at 0mm < R < 10mm rainfall range and more than 90% of runoff reduction at a rainfall range of 10mm < R < 20mm. Due to runoff volume reduction, more than 90% of nonpoint source pollutant were also removed by the bioretention.

Development Hybrid Filter System for Applicable on Various Rainfall (다양한 강우사상에 대응 가능한 침투여과형 기술개발)

  • Choi, Jiyeon;Kim, Soonseok;Lee, Soyoung;Nam, Guisook;Cho, Hyejin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.535-541
    • /
    • 2013
  • The urbanization affects significantly on a natural water circulation system by increasing the imperviousness rate. It is also negatively affecting on urban temperature, environmental pollution, water quality, and aqua-ecosystems. The Korea MOE (Ministry of Environment) adapted a new environmental policy in order to reduce the impact of urbanization, which is the Green Stormwater Infrastructure (GSI) program. The GSI can be achieved by protecting conservable green spaces, enlarging more green spaces, and constructing more permeable pavements. The GSI is including many different techniques such as bioretention, rain garden, infiltration trench and so on. Also It is the infrastructures using natural mechanisms of soils, microorganisms, plants and animals on a water circulation system and pollutant reduction. In this research, a multi functional GSI technology with infiltration-filtration mechanisms has been developed and performed lab-scale tests to evaluate the performances about infiltration rate restoration and pollutant reduction. The most of pollutants including metals, organics and particulates were reduced about 50~90% due to water infiltration and storage functions. The clogging was found when the TSS loading rate was reached on $8.3{\sim}9.0kg/m^2$, which value is higher than the values in literatures. It means the new technology can show high performances with low maintenances.

Clogging Potential in Constructed Vertical Flow Wetlands Employing Different Filter Materials for First-flush Urban Stormwater Runoff Treatment (도시 초기 강우유출수 처리를 위한 수직흐름습지에서 여재별 폐색 잠재성 분석)

  • Chen, Yaoping;Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.20 no.3
    • /
    • pp.235-242
    • /
    • 2018
  • The function of vertical subsurface flow wetlands can potentially be reduced with time due to clogging and are often assumed to be occurring when ponding and overflow is observed during rainfall. To investigate their clogging potential, three pilot-scale vertical subsurface flow (VSF) wetland systems were constructed employing woodchip, pumice, and volcanic gravel as main media. The systems received stormwater runoff from a highway bridge for seven months, after which the media were taken out and divided into layers to determine the amount and characteristics of the accumulated clogging matters. Findings revealed that the main clogging mechanism was the deposition of suspended solids. This is followed by the growth of biofilm in the media which is more evident in the wetland employing woodchip. Up to more than 30% of the clogging matter were found in the upper 20 cm of the media suggesting that this layer will need replacement once clogging occurs. Moreover, no signs of clogging were observed in all the wetlands during the operation period even though an estimation of at least 2 months without clogging was calculated. This was attributed to the intermittent loading mode of operation that gave way for the decomposition of organic matters during the resting period and potentially restored the pore volume.

Spatial prioritization of permeable pavement considering multiple general circulation models: Mokgamcheon watershed (다수의 전지구모형을 고려한 투수성 포장시설의 우선지역 선정: 목감천 유역)

  • Song, Younghoon;Chung, Eun-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1011-1023
    • /
    • 2019
  • Rapid urbanization increases the risk of hydrologic disasters due to the increase of impervious areas in urban areas. Precipitation characteristics can be transformed due to the rise of global temperatures. Thus urban areas with the increased impervious areas are more exposed to hydrological disasters than ever before. Therefore, low impact development practices have been widely installed to rehabilitate the distorted hydrologic cycle in the urban area. This study used the Stormwater Management Model to analyze the water quantity and quality of the Mokgamcheon which had been severely urbanized, considering future climate scenarios presented by various general circulation models (GCMs). In addition the effectiveness of permeable pavement by 27 sub-watersheds was simulated in terms of water quantity and quality considering various GCMs and then the priorities of sub-watersheds were derived using an alternative valuation index which uses the pressure-state-response framework.

Analysis of Inundation Causes in Urban Area based on Application of Prevention Performance Objectives (도시유역에서의 방재성능목표 적용과 침수원인 분석)

  • kim, Jong-Sub
    • Journal of Wetlands Research
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The purpose of this study is to analyze quantitatively the inundation causes by applying the prevention of performance objectives using the urban storm water runoff model XP-SWMM. The model was built by using DTM and storm sewer-network with the storm sewer and geo-data of the study area as input-data to assess the current performance of prevention. An analysis of the causes of the inundation by the frequency and the rainfall-duration. As a result, lack of pipe capacity due to flooding, as well as inundation heavier that the backwater rainfall occurs due to the rise of water level of outside. For solve the inundation damage, It is necessary to improvement pipe of capacity lack and installation of a flood control channel.

Analysis of Non-point Pollution Source Reduction by Permeable Pavement (투수성 포장에 의한 비점오염원 저감 효과 분석)

  • Koo, Young Min;Kim, Young Do;Park, Jae Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.49-62
    • /
    • 2014
  • As the Urban area grows and more land is developed both within the city and in surrounding areas, hydrologic functions of the natural water cycle are altered. Urbanization creates impervious areas that negatively impact stormwater runoff characteristics. these changes to the natural hydrologic cycle result in the increased flooding, decreased groundwater recharge, increased urban heat island effects. Finally, the land use and other activities result in accumulation and washoff of pollutants from surface, resulting in water quality degradation. Therefore, in this study, evaluating and quantitative analysis of the percolation effect through infiltration experiment of permeable pavement, which is one of the ways that can reduce the problem of the dry stream. Also the SWMM model is used to study the effect of the hydrologic cycle for permeable pavement block contribution.

Analysis of Stormwater Runoff Characteristics for Spatial Distribution of LID Element Techniques using SWMM (SWMM 모형을 이용한 LID 요소기술의 공간적 분포에 따른 우수유출특성 분석)

  • Yeon, Jong Sang;Jang, Young Su;Lee, Jae Hyuk;Shin, Hyun Suk;Kim, Eung Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3983-3989
    • /
    • 2014
  • As the storm water runoff characteristics in urban areas have changed owing to urbanization, centralized facilities to reduce the urban flood runoff had been implemented. On the other hand, because they have their limitations, LID (Low Impact Development) of the distributed facilities for storm water runoff reduction is being actively planned and applied. The purpose of this study was to analyze the runoff characteristics for the spatial distribution of typical LID element techniques. This study set a study basin consisting of the five subbasins with the same basin and drainage systems, and analyzed the flood runoff characteristics from the two scenarios, one is for the locations and the other is for the number of green roofs (GR) and permeable pavement (PP), respectively, selected as typical LID element techniques. The SWMM implementation results showed that GR reduces 11.07% of the total and 3.42% of the peak amounts of storm water runoff, and PP leads to 18.09% of the total and 17.94% of the peak discharge reduction for a subbasin. Such a reduction rate is constant regardless of the LID locations, and increases linearly with the number of LID applications. The different runoff reduction rates between the GR and PP applications appear to be due to the effects of the different hydraulic conductivities in the control parameters for each LID.

Friction loss of multi-purpose stormwater tunnel simulated by Flow 3D (Flow 3D를 이용한 다목적 수로 터널의 마찰 손실 산정)

  • Lee, Du Han;Kim, Jung Hwan;Chung, Gunhui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.14-21
    • /
    • 2017
  • The extreme floods recently are have been attributed global warming, The development of a canal tunnel to prevent floods by making a bypass or undercurrent to flood discharge in a major flooding area is required because urban flooding in heavy rainfall occurs frequently, increasing the impermeability according to lack of capacity in sewage to urbanization by the existing urban basin. In this study, a numerical simulation was performed to support design standards for a multi-purpose waterway tunnel combined road tunnel of canal tunnel. The numerical simulation showed that the size of the friction loss occurring in the tunnel section of the same channel occurred more than the theoretically calculated frictional loss derived from the numerical simulations. This is probably due to the additional frictional loss caused by the change in the flow structure due to the geometry of the pipe when the shape of the channel is non-circular. The increase in friction loss was more pronounced in the laminar flow than in the turbulent flow. Depending on the shape of the conduit, the friction loss should be adjusted for accurate flow calculations. This result can provide the basin information about the design of flood by a pass conduit.

Runoff Characteristics of Stormwater in Small City Urban Area (국내 중소 도시지역 강우유출수의 유출특성)

  • Lee, Hong-Shin;Lee, Seung-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.193-202
    • /
    • 2009
  • This study was conducted to identify the magnitude of first flush in small city urban area and to provide the basic information on the criteria of stormwater runoff management. Monitoring site was surrounded by residential area in Gumi city near to national industrial complex and the monitoring period was three months. Total watershed area was 24.9 ha, where 80% of the area is impervious (asphalt of pavement type). Periodic monitoring of conventional water quality parameters were conducted with six times of rainfall period. Event mean and site mean concentrations for all the parameters were calculated based on the analytical results. Particle size distribution was 9.82 ${\mu}m$ for $D_{0.1}$, 38.99 ${\mu}m$ for $D_{0.5}$ and 159.61 ${\mu}m$ for $D_{0.9}$ respectively. First flush phenomenon was detected highly in particulate solids than dissolved ones. The first flush criteria results by mass first flush contained between 44.4% to 58.5% pollutant mass during the first 30% of runoff volume. Mass first flush ratio and particle size distribution obtained in this study are expected to provide the basic information for the design and operation of non-point source treatment facility.

Change of dry matter and nutrients contents in plant bodies of LID and roadside (도로변 및 LID 시설 내 식생종류별 식물체 내 건물률 및 영양염류 함량 변화)

  • Lee, YooKyung;Choi, Hyeseon;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2021
  • The application of nature-based solutions, such as low impact development (LID) techniques and green infrastructures, for stormwater management continue to increase in urban areas. Plants are usually utilized in LID facilities to improve their pollutant removal efficiency through phytoremediation. Plants can also reduce maintenance costs and frequency by means of reducing the accumulation of pollutants inside the facility. Plants have long been used in different LID facilities; however, proper plant-selection should be considered since different species tend to exhibit varying pollutant uptake capabilities. This study was conducted to investigate the pollutant uptake capabilities of plants by comparing the dry matter and nutrient contents of different plant species in roadsides, LID facilities, and landscape areas. The dry matter content of the seven herbaceous plants, shrubs, and arboreal trees ranged from 60% to 90%. In terms of nutrient content, the total nitrogen (TN) concentration in the tissues of herbaceous plants continued to increase until the summer season, but gradually decreased in the succeeding periods. TN concentrations in shrubs and trees were observed to be high from early spring up to the late summer seasons. All plant samples collected from the LID facility exhibited high TP content, indicating that the vegetative components of LID systems are efficient in removing phosphorus. Overall, the nutrient content of different plant species was found to be highly influenced by the urban environment which affected the stormwater runoff quality. The results of this study can be beneficial for establishing plant selection criteria for LID facilities.