• Title/Summary/Keyword: urban rivers

Search Result 231, Processing Time 0.04 seconds

Estimation of Fish Species Diversity of Small and Medium Rivers of Korea with Fish Species-Habitat Relationship Models od GAP (GAP기법을 이용한 종소하천의 어류종다양성 예측기법 연구)

  • 박종화;홍성학
    • Spatial Information Research
    • /
    • v.6 no.1
    • /
    • pp.91-102
    • /
    • 1998
  • The objectives of this research were to develop fish-habitat relationship models which can be used to estimate fish species riclmess of small and medium rivers in Korea, and test the accuracy of the models. The models are based on the Aquatic GAP Analysis model in the New York Cooperative Fish & Wildlife Research Unit (19%), and they employ three habitat factors; river size, physical habitat, and water quality of each river segment. Model 1 and model II are based on the water quality standard for life support of EP A and the water quality class of Korea, respectively. Test sites for this study include one urban stream and three less spoiled tributaries of the Han River. The results of this research can be summarized as follows. First, the number of habitat types identified by model I and model II are nine and 14, respectively. Second, the average accuracy of the three distribution maps of rare or endangered fish species are 80.6% (model 1) and 81.2% (model II). Third, the accuracy of fish species richness are 94% (model 1) and 95% (model II), and the water quality is the most important factor affecting fish species richness. Fourth, the accuracy of fish species list are 50.5% (model 1) and 68.7% (model II), but the accuracy of less spoiled stream segments and that of polluted stream segments are 67.1% and 86.5%, respectively. Finally, it can be concluded that the overall performance of model II is better than that of model I at our test sites.

  • PDF

An Analysis of Landform Type of Traditional Space with the National Cultural Heritage in the Damage of Gyeongju Earthquake (경주지진피해로 본 국가지정문화재를 보유한 전통공간의 지형적 입지유형 분석)

  • Koo, Min-Ah
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.1
    • /
    • pp.109-119
    • /
    • 2018
  • The purpose of this study is to analyze the geographical location information data and the damage trends according to the type of landform for the study of various cultural properties in 44 traditional places with national designated cultural properties damaged by the racing earthquake on September 12, 2016. The landform type was the most enclosed type, and the location type was more frequent in the surrounding area, such as urban and rural areas. The waterside type was located along rivers, rivers, valleys, lakes, and oceans except for the top of the mountain, but this area was found to be vulnerable to earthquakes, It is understood that it should be referred from cultural property management the side. 26 of the total 44 were temples. The elevation and slope increased with increasing of the flat type, the background type, the enclosed type, the mountain type, and the top type. Most often located on 1-20 % slopes, with the slope facing south more often than not. Within the 10 km range from the epicenter, 23% were concentrated, within the range of nearly 65 km, the background type was closest, and was concentrated in the northeast and southwest from the epicenter. In this study, it is meaningful to analyze earthquake damage in various aspects from the viewpoint of traditional space which is a landscaping cultural property and it will be used for planning, designing and managing traditional spaces.

Cause Analysis and Improvement Suggestion for Flood Accident in Dorimcheon - Focused on the Tripping and Isolation Accidents (도림천에서 발생한 고립 및 실족사고의 원인분석을 통한 개선방안 도출에 관한 연구)

  • Lee, Kyung-Su;Jeon, Jong-Hyeong;Kim, Tai-Hoon;Kim, Hyunju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.25-36
    • /
    • 2021
  • This study analyzed the causes of flood accidents, such as isolation and lost footing accidents in Dorimcheon, to provide legal and institutional improvements. For cause analysis, Field Investigation, Stakeholder Interview, Report, manual, Law et al. Review, Analysis of water level change characteristics, automatic alarm issuance standard level analysis, and evacuation time according to river control were evaluated. Dorimcheon has the characteristics of a typical urban river, which is disadvantageous in terms of water control. In addition, the risk of flood accidents is high because the section where fatal accidents occur forms sharply curved channels. Tripping and isolation accidents occur in the floodplain watch and evacuation stage, which is the stage before the flood watch and warning is issued. Because floodplain evacuation is issued only when the water level rises to the floodplain, an immediate response according to the rainfall forecast is essential. Furthermore, considering that the rate of water level rise is up to 2.62 cm/min in Sillimgyo 3 and Gwanakdorimgyo, sufficient evacuation time is not secured after the floodplain watch is issued. Considering that fatal accidents occurred 0.46 m below the standard water level for the flood watch, complete control is very important, such as blocking the entry of rivers to prevent accidents. Based on these results, four improvement measures were suggested, and it is expected to contribute to the prevention of Tripping and Isolation Accidents occurring in rivers.

Flow rate prediction at Paldang Bridge using deep learning models (딥러닝 모형을 이용한 팔당대교 지점에서의 유량 예측)

  • Seong, Yeongjeong;Park, Kidoo;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.565-575
    • /
    • 2022
  • Recently, in the field of water resource engineering, interest in predicting time series water levels and flow rates using deep learning technology that has rapidly developed along with the Fourth Industrial Revolution is increasing. In addition, although water-level and flow-rate prediction have been performed using the Long Short-Term Memory (LSTM) model and Gated Recurrent Unit (GRU) model that can predict time-series data, the accuracy of flow-rate prediction in rivers with rapid temporal fluctuations was predicted to be very low compared to that of water-level prediction. In this study, the Paldang Bridge Station of the Han River, which has a large flow-rate fluctuation and little influence from tidal waves in the estuary, was selected. In addition, time-series data with large flow fluctuations were selected to collect water-level and flow-rate data for 2 years and 7 months, which are relatively short in data length, to be used as training and prediction data for the LSTM and GRU models. When learning time-series water levels with very high time fluctuation in two models, the predicted water-level results in both models secured appropriate accuracy compared to observation water levels, but when training rapidly temporal fluctuation flow rates directly in two models, the predicted flow rates deteriorated significantly. Therefore, in this study, in order to accurately predict the rapidly changing flow rate, the water-level data predicted by the two models could be used as input data for the rating curve to significantly improve the prediction accuracy of the flow rates. Finally, the results of this study are expected to be sufficiently used as the data of flood warning system in urban rivers where the observation length of hydrological data is not relatively long and the flow-rate changes rapidly.

Estimation of Pollutant EMCs and Loadings in Highway Runoff (국내 고속도로 강우 유출수의 EMCs 및 유출 부하량 산정)

  • Kim, Lee-Hyung;Ko, Seok-Oh;Lee, Byung-Sik;Kim, Sunggil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.225-231
    • /
    • 2006
  • The nonpoint source control is based on TPLMS (Total Pollution Load Management System) program. Recently, the Ministry of Environment in Korea has programed TPLMS for 4 major large rivers to improve the water quality in rivers by controling the total pollutant loadings from the watershed area. Usually the urbanization is the main pollutant sources, particularly for nonpoint pollutants, because of high imperviousness and high pollutant mass emissions. The stormwater runoff from urban areas is containing various pollutants such as sediments, metals and toxic chemicals due to human and vehicle activities. Of the various landuses, the highways are highly polluted landuses because of high pollutant accumulation rate by vehicle activities during dry periods. Therefore, this research is achieved to provide pollutant EMCs (Event Mean Concentrations) and mass loadings washed-off from highways during rainfall periods. Five monitoring locations were equipped with an automatic rainfall gage and an flow meter. The results show that the EMC ranges for 95% confidence intervals in highway land use are 45.52-125.76 mg/L for TSS, 52.04-95.48 mg/L for COD, 1.77-4.48 mg/L for TN, 0.29-0.54 mg/L for TP. The ranges of washed- off mass loading are $712.7-2,418.4mg/m^2$ for TSS and $684.1-1,779.6mg/m^2$ for COD.

A Study on the Variation of River Vegetation by Seasonal Precipitation Patterns (계절별 강수 패턴에 따른 하천 식생 변화 양상 연구)

  • Hee-Jeong JEONG;Seung-Yeon YU;Eun-Ji CHO;Yong-Joo JI;Yong-Suk KIM;Hyun-Kyung OH;Jong-Sung LEE;Hyun-Do JANG;Dong-Gil CHO
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.2
    • /
    • pp.1-19
    • /
    • 2023
  • In Korea, excessive vegetation in rivers made up of sand and gravel is emerging as a nationwide problem, which is attributed to increased spring precipitation and decreased annual precipitation. Therefore, this study was conducted for the purpose of identifying the effect of changes in precipitation patterns on river vegetation in Namcheon, Gyeongju, and analyzing the area of vegetation and ecological characteristics. As a result of the study, the amount of monthly precipitation in the summer of Namcheon decreased after 2007, and the area of vegetation increased continuously compared to the area of the sandbank. The proportion of naturalized plants increased steadily when precipitation continued to a level that did not cause flooding, but the area occupied by naturalized plants was small. Also, when the water level is maintained, the species diversity is low due to the dominance of a single species, and the dominant species was mainly native plants. Dominance of native plants inhibited the growth of naturalized plants, but the vegetation area increased even more. Therefore, it is necessary to manage the spread of vegetation itself rather than the division of native plants and naturalized plants in order to eliminate the active growth and prosperity of river vegetation. High water levels and continuous flooding caused by torrential rains in summer disturbed the plant communities, and vegetation formed afterwards was mainly native plants. Such flooding in river ecosystems is a positive factor for the emergence of native plants and over-formed vegetation communities, so it should be considered when establishing a vegetation management plan.

A Study on the Plan of Plant State for Improvement of Stream-ecosystem - in Case of Chungrang Stream (자연형 하천 생태계를 위한 식생개선 방안 연구 -중랑천을 사례로)

  • Ann, Geun-Young;Lee, Eun-Heui
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.2
    • /
    • pp.35-46
    • /
    • 2000
  • Environmental pollution has become more and more serious in urban areas since industrialization as most streams and rivers were developed heavily because of economic opportunism. Recently river restoration techniques, applied in advanced countries, have been introduced to Korea. But the application of river restoration techniques developed in advanced countries, has a lot of limitations in respect of economic loss during construction, suitability for the domestic situation and the problem of flood control. The method of minimizing the problems must take into consideration these issues, including economic considerations. So from these points of view this study intends to plan ecological river restoration and to create a nature friendly river in the case of the Chungrang river. The subject site is the upper part of Chungrang river, from the Nokchun bridge to Sang-kye bridge, where the ecosystem is well preserved in comparison with other parts of the river. The subject site is divided into 10 sections for plant state investigation. The result of plant-state investigation showed pioneer water plants such as Persicaria thunbergii, Oenanthe jaranica, Rumex crispus. appeared very often. On the basis of the existing plant state, this study has planned an appropriate plant state for the river and has planned for bank protection using a method of construction, which is suitable for natural river. In this study, first of all, it is intended to investigate the plant growth state of Chungrang river and try to plan a particular ecosystem for the river for the purpose of the revival of the natural river.

  • PDF

Riparian Area Characteristics of the Middle and Lower Reaches of the Nakdong River, Korea (낙동강 중·하류 지역의 수변 특성에 관한 연구)

  • Kang, Dae-Seok;Sung, Ki-June;Yeo, Un-Sang;Chung, Yong-Hyun;Lee, Suk-Mo
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.3
    • /
    • pp.189-200
    • /
    • 2008
  • As a transition zone between terrestrial and aquatic ecosystems, riparian areas of rivers and streams play significant roles in production and decomposition for river and stream systems. Understanding of the physical and ecological characteristics of riparian areas are, therefore, important for the management of river and stream systems. It is especially important to understand the characteristics of riparian areas for the Nakdong River in Korea which has a large watershed area and diverse land uses. This study aimed at collecting field data, according to stream types, which are essential for the management of riparian areas of the middle and lower reaches of the Nakdong River, Korea. Most riparian areas surveyed in this study had roads within 100 meters from river edges. Distances from water edge to banks were less than 1m for most riparian areas neighboring agricultural lands, indicating that those areas might be very vulnerable to pollutant inputs from non-point sources. Water quality data indicated that soil erosion in the riparian areas could be a major source of phosphorus input to the Nakdong River and land use patters might have a significant influence on nitrogen concentration in the river. Heavy metal concentrations in soils of the riparian areas of the river were below soil quality standards, except arsenic and chromium. Vegetation surveys showed that therophytes were the most frequently occurred riparian plants in the Nakdong River. Number of aquatic plant species increased downstream, with the most diverse aquatic plants observed in wetlands and irrigation canals of the West Nakdong River. Occurrence rate of naturalized plants and urbanization index were high in the survey sites adjacent to urban and agricultural areas.

Performance tests and uncertainty analysis of tipping bucket rain gauge (전도형 강수량계의 성능시험 및 불확도 분석)

  • Hong, Sung-taek;Park, Byung-don;Shin, Gang-wook;Jung, Hoe-kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.595-597
    • /
    • 2018
  • Precipitation has a wide range of applications, such as the management and operation of dams and rivers, supply of dranking water for urban and industrial complex, farming and fishing, forest greening, and safety management. In order to prepare for disasters and to obtain economical effects in case of flood damage, it is necessary to measure accurate precipitation. In this study, we carried out the characteristics tests for various types of rainfall gauge using integrated verification system, which can analyze the performance of collective type rainfall gauge. The uncertainty for tipping bucket rain gauge was 0.2887 mm. Therefore, it can be seen that the uncertainty is calculated differently depending on the characteristics of the rainfall gauges. The uncertainty is also influenced greatly by the resolution.

  • PDF

ECOLOGICAL RESPONSE OF STREAMS IN KOREA UNDER DIFFERENT MANAGEMENT REGIMES

  • Lee Chang-Seok;Cho Yong-Chan;Shin Hyun-Cheol;Moon Jeong-Suk;Lee Byung-Cheon;Bae Yang-Seop;Byun Hwa-Geun;Yi Hoon-Bok
    • Water Engineering Research
    • /
    • v.6 no.3
    • /
    • pp.131-147
    • /
    • 2005
  • Today, a trend that tries to return the artificial space of a river to a natural one is expanding. But in Korea, which lies in the monsoon climate zone, rivers endure flood damage every year. Moreover, climatic change from global warming causes severe variations in precipitation patterns. Until recently, river restoration practices in Korea have followed partial restoration. These restorative treatments transformed artificial structures of the stream to natural ones and introduced natural vegetation by imitating natural or semi-natural streams. Treatment transformed the riparian structure and increased the diversity of micro-topography and vegetation. Furthermore, restoration recovered species composition, increased species diversity, and inhibited the establishment of exotic species. In particular, the Suip stream, which was left to its natural process for approximately 50 years, recovered its natural features almost completely through passive restoration. An urban stream, the Yangjae, and a rural stream, the Dongmoon, were restored partially by applying ecological principles. On the contrary, technological treatment applied to recover flood damage induced species composition far from the natural vegetation and decreased species diversity. Additionally, this treatment increased exotic species. The same results were found also in benthic invertebrate and fish fauna. The above-mentioned results reflect the importance of ecological considerations in river management.

  • PDF