• Title/Summary/Keyword: urban resilience

Search Result 118, Processing Time 0.026 seconds

A Study on Waterfront Planning and Design from the Perspective of Resilience - Focusing on Resilient by Design Challenge and Sponge City (리질리언스 관점에서 수변 공간 계획에 관한 고찰 - 리질리언트 바이 디자인 공모전과 스펀지 시티 프로젝트를 바탕으로)

  • Jinhyun Jun
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.562-571
    • /
    • 2023
  • Purpose: This study aims to provide a direction for restructuring resilient waterfront spaces, emphasizing the severity of water-related disasters and the significance of developing responsive urban strategies. Method: To achieve this objective, the study analyzes overseas planning and design cases based on the theoretical framework of urban resilience. The goal is to identify physical and social systemic design elements that can be applied to waterfront space planning and design of Korea. Result: The proposals from the Resilient by Design Callenge included strategies for enhancing social systems and promoting sustainability in a more systematic manner. Additionally, various physical design strategies and technologies were identified in the Sponge City projects, which aim to create a flexible urban waterfront space. Conclusion: When planning and designing Korean waterfront spaces to effectively respond to disasters, several elements should be considered, such as enhancing educational functions, expanding local resident participation, establishing a governance system, developing systematic sustainable plans, adopting ecological approaches, and implementing various low-impact development techniques.

A Study on a Direction of the Development of City on Storm and Flood Risk Safety Standards in Consideration of Resilience (방재력을 고려한 도시의 풍수해 안전기준 개발방향 설정 연구)

  • Kim, Mi-Sun;Shin, Jin-Dong;Shim, Sook-Yeon;Kim, Hyun-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.127-136
    • /
    • 2015
  • This study has analyzed city plans and disaster prevention plans from the perspective of resilience and established a direction of the development of city safety standards. The analysis made use of the 5 functions of resilience (5Rs) and foreign cases. As a result of the analysis, the direction of the development of city safety standards was drawn from 4 perspectives at large. First, this study proposed a method of the systematization of the safety standards involved in components within city plans. Second, it suggested a method to strengthening urban resilience abilities in terms of the association between disaster prevention and city plans. Third, it found out components requiring safety standards considering foreign and other standards, and proposed a direction of complementary measures for safety standards. Lastly, it came up with a direction of the development of city safety standards, the necessity of which are required though existing plan criteria did not contain them. This study is significant in that it has defined the ultimate goal of safety a city should pursue as resilience and proposed a direction of the development of related standards.

A Review of Urban Flooding: Causes, Impacts, and Mitigation Strategies (도시 홍수: 원인, 영향 및 저감 전략 고찰)

  • Jin-Yong Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.489-502
    • /
    • 2023
  • Urban floods pose significant challenges to cities worldwide, driven by the interplay between urbanization and climate change. This review examines recent studies of urban floods to understand their causes, impacts, and potential mitigation strategies. Urbanization, with its increase in impermeable surfaces and altered drainage patterns, disrupts natural water flow, exacerbating surface runoff during intense rainfall events. The impacts of urban floods are far-reaching, affecting lives, infrastructure, the economy, and the environment. Loss of life, property damage, disruptions to critical services, and environmental consequences underscore the urgency of effective urban flood management. To mitigate urban floods, integrated flood management strategies are crucial. Sustainable urban planning, green infrastructure, and improved drainage systems play pivotal roles in reducing flood vulnerabilities. Early warning systems, emergency response planning, and community engagement are essential components of flood preparedness and resilience. Looking to the future, climate change projections indicate increased flood risks, necessitating resilience and adaptation measures. Advances in research, data collection, and modeling techniques will enable more accurate flood predictions, thus guiding decision-making. In conclusion, urban flooding demands urgent attention and comprehensive strategies to protect lives, infrastructure, and the economy.

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes

  • Tian, Yuan;Lu, Xiao;Lu, Xinzheng;Li, Mengke;Guan, Hong
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.925-942
    • /
    • 2016
  • With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.

Suggestion of Quantitative Assessment of Groundwater Resilience (지하수 리질리언스의 정량적 평가 방안)

  • Yu, Soonyoung;Kim, Ho-Rim;Yun, Seong-Taek;Ryu, Dong-Woo;Yum, Byoung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.60-76
    • /
    • 2021
  • The concept of resilience seems applicable for sustainable groundwater management. The resilience is broadly defined as the ability of a system to resist changes by external forces (EFs), and has been used for disaster management and climate change adaptation, including the groundwater resilience to climate change in countries where groundwater is a major water resource, whereas not yet in the geological society of South Korea. The resilience is qualitatively assessed using the absorptive, adaptive, and restorative capacity representing the internal robustness, self-organization, and external recovery resources, respectively, while quantitatively using the system impact (SI) and recovery effort (RE). When the groundwater is considered a complicated system where physicochemical, biological, and geological components interact, the groundwater resilience can be defined as the ability of groundwater to maintain the targeted quality and quantity at any EFs. For the quantitative assessment, however, the resilience should be specified to an EF and measurable parameters should be available for SI and RE. This study focused on groundwater resilience to two EFs in urban areas, i.e., pollution due to land use change and groundwater withdrawal for underground structures. The resilience to each EF was assessed using qualitative components, while measurements for SI and RE were discussed.

Urban Resilience of Seoul: Evaluation and Implication (서울시의 도시회복력(urban resilience) 평가와 시사점)

  • Oh, Se-Eun;Nam, Haun-Jung;Shin, Sang-Young
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2017.11a
    • /
    • pp.354-355
    • /
    • 2017
  • 사회 정책환경 변화로 인해 다양한 유형의 안전문제가 대두되면서 기존의 시설물 안전 분야 외 다양한 안전이슈가 사회문제화 되고 있다. 이 연구에서는 서울의 안전을 위협하는 급성 충격뿐만 아니라 도시전반에 걸친 잠재적 위협과 스트레스에 대응하기 위하여 100RC(100 Resilient Cities)에서 제시한 평가체계를 기반으로 도시를 위협하는 재난 사고 및 도시압박요소, 정책환경요소에 대해 평가 분석을 실시하였다. 본 연구의 결과로 서울시의 달라진 도시안전 여건과 정책환경을 종합적으로 반영한 중장기 정책방안을 제시할 수 있을 것으로 기대한다.

  • PDF

A surrogate model-based framework for seismic resilience estimation of bridge transportation networks

  • Sungsik Yoon ;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • A bridge transportation network supplies products from various source nodes to destination nodes through bridge structures in a target region. However, recent frequent earthquakes have caused damage to bridge structures, resulting in extreme direct damage to the target area as well as indirect damage to other lifeline structures. Therefore, in this study, a surrogate model-based comprehensive framework to estimate the seismic resilience of bridge transportation networks is proposed. For this purpose, total system travel time (TSTT) is introduced for accurate performance indicator of the bridge transportation network, and an artificial neural network (ANN)-based surrogate model is constructed to reduce traffic analysis time for high-dimensional TSTT computation. The proposed framework includes procedures for constructing an ANN-based surrogate model to accelerate network performance computation, as well as conventional procedures such as direct Monte Carlo simulation (MCS) calculation and bridge restoration calculation. To demonstrate the proposed framework, Pohang bridge transportation network is reconstructed based on geographic information system (GIS) data, and an ANN model is constructed with the damage states of the transportation network and TSTT using the representative earthquake epicenter in the target area. For obtaining the seismic resilience curve of the Pohang region, five epicenters are considered, with earthquake magnitudes 6.0 to 8.0, and the direct and indirect damages of the bridge transportation network are evaluated. Thus, it is concluded that the proposed surrogate model-based framework can efficiently evaluate the seismic resilience of a high-dimensional bridge transportation network, and also it can be used for decision-making to minimize damage.