• Title/Summary/Keyword: urban outdoor

Search Result 297, Processing Time 0.027 seconds

Paint booth volatile organic compounds emissions in an urban auto-repair center

  • Cho, Minkyu;Kim, Ki-Hyun;Szulejko, Jan E.;Dutta, Tanushree;Jo, Sang-Hee;Lee, Min-Hee;Lee, Sang-hun
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.329-337
    • /
    • 2017
  • A major concern regarding most auto-repair shops in residential areas is the emission of odorous volatile organic compounds (VOCs) into the local atmosphere, especially during painting operations. VOCs contribute to poor local air quality and are responsible for the perceived odor and discomfort experienced by local residents. Sixteen major VOCs (6 aromatic hydrocarbons and 10 aliphatic carbonyl compounds) were selected as potential target compounds. The site was an auto-repair shop located in a central region of Seoul, South Korea, where the air quality of the site has been a subject of residents' complaints. The sampling points were as follows: 1) in the painting booth with new (NB) or old (OB) removal system, (2) in the exhaust duct after new (ND) or old (OD) odor removal filter, and (3) 2 m below the discharge vent (4 m above the ground) (outdoor air, OA). Each sample was coded: (1) before painting (BP), (2) during painting (DP), and (3) after painting (AP). The toluene level in the duct with the new removal filter during painting (ND-DP) was 1.5 ppm (v/v), while it was 3.8 ppm (v/v) in the right duct with an old removal filter during painting (OD-DP). Accordingly, the effect of filter replacement was reflected by differences in VOC levels. Therefore, accurate monitoring of odorous VOCs is an important step to reduce odor nuisance from local sources.

Distributional Characteristics of Volatile Organic Compounds in the Indoor Air of Various Office Environments (다양한 사무실 실내환경에서의 휘발성유기화합물의 농도분포 특성)

  • Baek, Sung-Ok;Jeon, Chan-Gon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.5
    • /
    • pp.477-491
    • /
    • 2014
  • This study was carried out to evaluate the concentration variations of volatile organic compounds (VOCs) in the office environments located in a large urban area with respect to seasonality, smoking status, types of ventilation and heating. Indoor air sampling was undertaken in 37 and 30 offices in Daegu city during summer and winter, respectively. The VOC samples were collected using adsorbent tubes, and were determined by thermal desorption coupled with GC/MS analysis. The analytical method was validated for repeatability, method detection limits (MDL), and duplication precision. A total of 34 VOCs of environmental concern were determined, including 15 aromatics and 19 halogenated hydrocarbons. Average concentrations of BTEX appeared to 1.91 ppb, 22.98 ppb, 3.44 ppb, and 3.70 ppb, respectively. These values were relatively higher levels than those measured at homes and outdoor roadsides reported by other researches. In general, the concentrations of VOCs were higher in winter than summer, in smoking offices than non-smoking offices, in forced ventilation type than natural ventilation type, and in combustion heating than non-combustion heating offices. However, such differences were not always significant at a level of 0.05 by statistical tests (t-test and/or Mann-Whitney test) with some exceptions for BTEX and styrene. This study demonstrated that smoking status, ventilation type and presence of combustion sources indoors could be important factors on the elevated concentrations of some VOCs in the office environment.

Characteristic Analysis of BIPV Module according to Rear Materials (후면부재에 따른 BIPV 모듈의 특성 분석)

  • Kim, Hyun-Il;Kang, Gi-Hwan;Park, Kyung-Eun;Yu, Gwon-Jong;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.4
    • /
    • pp.28-33
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. Building integrated photovoltaic(BIPV) has the potential to become a major source of renewable energy in the urban environment. BIPV has significant influenced on the reflection by rear materials such as white back sheet and the heat transfer through the building envelope because of the change of the thermal resistance by adding or replacing the building elements. In this study, to use as suitable building materials into environmentally friendly house like green home, characteristic analysis of BIPV module according to rear materials achieved. Electrical output of PV module with white back sheet is high about 10% compared to other pv module because of 83% reflectivity of white back sheet compared to 8.4% reflectivity of other PV modules with different rear materials(black back sheet and glass). In the result of outdoor experiment during a year, electrical output of four different PV module is decreased about 3.72%.

Development of Nano Ceramic Structures for HEPA Type Breathing Wall (HEPA Filter형 숨쉬는 벽체용 나노세라믹 여재개발)

  • Kim, Jong-Won;Ahn, Young-Chull;Kim, Gil-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.274-279
    • /
    • 2008
  • In the perspective of saving energy in buildings, high performance of insulation and air tightness for improving the heating and the cooling efficiency has brought the positive effect in an economical view. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and it is also very harmful to residents because they spend over 90% of their time in the indoor area. Therefore, the ventilation is important to keep indoor environment clean and it can also save energy consumption. In this study, a HEPA type breathing wall is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. To make fine porous structures, polymer nano fibers which were made by electro spinning method are used as a precursor. The nano fibers are coated with SiO2 nano particles and finally the HEPA type breathing wall is made by sintering in the electric furnace at $300\sim500^{\circ}C$. The pressure drops of nano ceramic structure are 8.2, 25.5 and 44.9 mmAq at the face velocity of 2.0, 5.9 and 8.8 cm/s, respectively. Also the water vapor permeability is $3.6g/m^2{\cdot}h{\cdot}mmHg$. In this research, the porous nano ceramic structures are obtained and the possibility for the usage of a material for HEPA type breathing wall can be obtained.

Design of Haebaragi Park (해바라기 공원설계)

  • 박찬용
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.32-40
    • /
    • 2001
  • The purpose of designing Haebaragi park, legally designated as children park, is to make a place for children including residents performing outdoor recreation, various social interactions, and cultural activities. Design concept for space plan have twofold; the one is a positive and creative playing space and facilities for children, escaped from a monotonous playground, and the other is a cultural and social space for neighboring communities. The site having the area of 1,316.7 square meters, located in Nowon-Dong, Buk-Gu, Daegu metropolitan City, is just like a vest pocket park. The adjacent area had been developed a slum area with mixed ad visually conflicting land use patterns and low income groups. The children and residents living in the area do not have any public space suitable for playing and/or rest. After analyzing such locational characteristic as accessibility, land use of the communities, and potentials for park development, and such design concept as arrangement of facilities, efficient use of site, and functional allocation of park space, We have mad a plan for composition of spaces for various activities, provision of facilities based on estimation of user-demand and activities, and planting. In the design process, we have tried to harmonize functional spaces with facilities, and to organize all the functions as a whole. To improve urbanity and aesthetic shape of park design, we have introduced a central plaza, design of a pave floor, a torrent, large trees for shade, colonnades and so on. From this design project, we can develop the site as a children park for increasing creativities and various playing opportunities, and as a resident space for rest, cultural activities. In the future, it is required that many attempt to design and develop urban small space as a park for children and residents.

  • PDF

Investigation and Testing of Location Systems Using WiFi in Indoor Environments

  • Retscher, Guenther;Mok, Esmond
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.83-88
    • /
    • 2006
  • Many applications in the area of location-based services and personal navigation require nowadays the location determination of a user not only in outdoor environment but also indoor. To locate a person or object in a building, systems that use either infrared, ultrasonic or radio signals, and visible light for optical tracking have been developed. The use of WiFi for location determination has the advantage that no transmitters or receivers have to be installed in the building like in the case of infrared and ultrasonic based location systems. WiFi positioning technology adopts IEEE802.11x standard, by observing the radio signals from access points installed inside a building. These access points can be found nowadays in our daily environment, e.g. in many office buildings, public spaces and in urban areas. The principle of operation of location determination using WiFi signals is based on the measurement of the signal strengths to the surrounding available access points at a mobile terminal (e.g. PDA, notebook PC). An estimate of the location of the terminal is then obtained on the basis of these measurements and a signal propagation model inside the building. The signal propagation model can be obtained using simulations or with prior calibration measurements at known locations in an offline phase. The most common location determination approach is based on signal propagation patterns, namely WiFi fingerprinting. In this paper the underlying technology is briefly reviewed followed by an investigation of two WiFi positioning systems. Testing of the system is performed in two localization test beds, one at the Vienna University of Technology and the second at the Hong Kong Polytechnic University. First test showed that the trajectory of a moving user could be obtained with a standard deviation of about ${\pm}$ 3 m.

  • PDF

A Study on the Older Residents' Cognitive Characteristics of Public Rental Housing Complex (공공임대주택에 거주중인 노령인구 인지특성에 관한 연구)

  • Oh, Yeinn;Jeong, Dawoon;Kwon, Soonjung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.4
    • /
    • pp.17-25
    • /
    • 2018
  • Purpose: Korean society is undergoing the rapid increase and poverty of elderly population. Therefore, the appropriate supply and planning of public rental housing for the low-income elderly is more important. The purpose of this study is to present the basic data for the study and planning of the elderly housing complex by analyzing the cognitive characteristics of the elderly residing in the rental housing. Methods: A questionnaire survey was conducted to identify health characteristics of the elderly living in the 'Gongreung SH Apartment'. 100 random samples were collected and 82 valid samples were analysed. Statistical analysis was performed using Excel and R for the age, sex, health, outdoor walking frequency and characteristics of Cognitive map of the elderly. Results: The characteristics of cognitive map were classified into point shapes and linear shapes. The linear group was lower in average age than the point group and tended to draw the map wider. The wider the map was, the more the number of elements in cognitive map was. The number of elements on the cognitive map decreased as respondents' age increased. On the other hand it was not related to residence period and gender of the elderly. Implication: The cognitive extent of the residential environment tends to decrease with age. Men's cognitive range is wider than women's. There is no corelation between the number of cognitive elements and cognitive map type. Men tend to have a systematic image of city, whereas women focus on relational and social urban factors. For sustainable apartment complex design, various characteristics of the group including men and women, different age and different health status should be considered.

Efficient Detection of Small Unmanned Aerial Vehicles in Cluttered Environment (클러터 환경을 고려한 효과적 소형 무인기 탐지에 관한 연구)

  • Choi, Jae-Ho;Kang, Ki-Bong;Sun, Sun-Gu;Lee, Jung-Soo;Cho, Byung-Lae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.389-398
    • /
    • 2019
  • In this paper, we propose a method to detect small unmanned aerial vehicles(UAVs) flying in a real-world environment. Small UAV signals are frequently obscured by clutter signals because UAVs usually fly at low altitudes over urban or mountainous terrain. Therefore, to obtain a desirable detection performance, clutter signals must be considered in addition to noise, and thus, a performance analysis of each clutter removal technique is required. The proposed detection process uses clutter removal and pulse integration methods to suppress clutter and noise signals, and then detects small UAVs by utilizing a constant false alarm rate detector. After applying three clutter removal techniques, we analyzed the performance of each technique in detecting small UAVs. Based on experimental data acquired in a real-world outdoor environment, we found it was possible to derive a clutter removal method suitable for the detection of small UAVs.

Will CFD ever Replace Wind Tunnels for Building Wind Simulations?

  • Phillips, Duncan A.;Soligo, Michael J.
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.107-116
    • /
    • 2019
  • The use of computational fluid dynamics (CFD) is becoming an increasingly popular means to model wind flows in and around buildings. The first published application of CFD to both indoor and outdoor building airflows was in the 1970's. Since then, CFD usage has expanded to include different aspects of building design. Wind tunnel testing (WTT) on buildings for wind loads goes back as far as 1908. Gustave Eiffel built a pair of wind tunnels in 1908 and 1912. Using these he published wind loads on an aircraft hangar in 1919 as cited in Hoerner (1965 - page 74). The second of these wind tunnels is still in use today for tests including building design ($Damljanovi{\acute{c}}$, 2012). The Empire State Building was tested in 1933 in smooth flow - see Baskaran (1993). The World Trade Center Twin Towers in New York City were wind tunnel tested in the mid-sixties for both wind loads, at Colorado State University (CSU) and the [US] National Physical Laboratory (NPL), as well as pedestrian level winds (PLW) at the University of Western Ontario (UWO) - Baskaran (1993). Since then, the understanding of the planetary boundary layer, recognition of the structures of turbulent wakes, instrumentation, methodologies and analysis have been continuously refined. There is a drive to replace WTT with computational methods, with the rationale that CFD is quicker, less expensive and gives more information and control to the architects. However, there is little information available to building owners and architects on the limitations of CFD for flows around buildings and communities. Hence building owners, developers, engineers and architects are not aware of the risks they incur by using CFD for different studies, traditionally conducted using wind tunnels. This paper will explain what needs to happen for CFD to replace wind tunnels. Ultimately, we anticipate the reader will come to the same conclusion that we have drawn: both WTT and CFD will continue to play important roles in building and infrastructure design. The most pressing challenge for the design and engineering community is to understand the strengths and limitations of each tool so that they can leverage and exploit the benefits that each offers while adhering to our moral and professional obligation to hold paramount the safety, health, and welfare of the public.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.