• Title/Summary/Keyword: urban inundation

Search Result 246, Processing Time 0.027 seconds

A Review of Urban Flooding: Causes, Impacts, and Mitigation Strategies (도시 홍수: 원인, 영향 및 저감 전략 고찰)

  • Jin-Yong Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.489-502
    • /
    • 2023
  • Urban floods pose significant challenges to cities worldwide, driven by the interplay between urbanization and climate change. This review examines recent studies of urban floods to understand their causes, impacts, and potential mitigation strategies. Urbanization, with its increase in impermeable surfaces and altered drainage patterns, disrupts natural water flow, exacerbating surface runoff during intense rainfall events. The impacts of urban floods are far-reaching, affecting lives, infrastructure, the economy, and the environment. Loss of life, property damage, disruptions to critical services, and environmental consequences underscore the urgency of effective urban flood management. To mitigate urban floods, integrated flood management strategies are crucial. Sustainable urban planning, green infrastructure, and improved drainage systems play pivotal roles in reducing flood vulnerabilities. Early warning systems, emergency response planning, and community engagement are essential components of flood preparedness and resilience. Looking to the future, climate change projections indicate increased flood risks, necessitating resilience and adaptation measures. Advances in research, data collection, and modeling techniques will enable more accurate flood predictions, thus guiding decision-making. In conclusion, urban flooding demands urgent attention and comprehensive strategies to protect lives, infrastructure, and the economy.

Evaluation of the Application on Distributed Inundation Routing Model (SIMOD) Using MDM and FWA Method (다중흐름방향법과 평수가정법을 이용한 분포형 침수추적모형(SIMOD)의 적용성 평가)

  • Kim, Jin Hyuck;Lee, Suk Ho;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.2
    • /
    • pp.261-268
    • /
    • 2018
  • The study used the simplified flooding analysis model, SIMOD, to distribute the total flood discharge by time, so research on flooding in urban areas can be conducted. The conventional flooding analysis models have limitations in constructing input data and take a long time for analysis. However, SIMOD is useful because it supports rapid decision-making process using quick modeling based on simple hydrological data, such as topography and inflow flood of the study area, to analyze submerged routes formed by flooding. Therefore, the study used the SIMOD model to analyze flooding in urban areas before conducting a comparative study with the outputs from FLO-2D, which is one of the conventional flooding analysis models, to identify the model's applicability. Seongseoje was selected as the study area, as it is located downstream the Geumho river where streams flow in the adjacent areas, and dikes are high enough to apply the "Overflow and Break" scenario for urban areas. With regard to topography, the study applied DEM data for the conventional flooding analysis and DSM data to represent urban building communities, distribution of roads, etc. Input flood discharge was calculated by applying the rectangular weir equation under the bank and break scenario through a 200-year return period of a design flood level. Comparative analysis was conducted in a flooded area with a simulation time of 1-24 hours. The time for the 24-hour simulation in SIMOD was less than 7 minutes. Compared with FLO-2D, the difference in flooded areas was less than 20%. Furthermore, the study identified the need for topography data using DSM for urban areas, as the analysis result that applies DSM showed the influence of roads and buildings.

Review for Assessment Methodology of Disaster Prevention Performance using Scientometric Analysis (계량정보 분석을 활용한 방재성능평가 방법에 대한 고찰)

  • Dong Hyun Kim;Hyung Ju Yoo;Seung Oh Lee
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.4
    • /
    • pp.39-46
    • /
    • 2022
  • The rainfall characteristics such as heavy rains are changing differently from the past, and uncertainties are also greatly increasing due to climate change. In addition, urban development and population concentration are aggravating flood damage. Since the causes of urban inundation are generally complex, it is very important to establish an appropriate flood prevention plan. Thus, the government in Korea is establishing standards for disaster prevention performance for each local government. Since the concept of the disaster prevention performance target was first presented in 2010, the setting standards have changed several times, but the overall technology, methodology, and procedures have been maintained. Therefore, in this study, studies and technologies related to urban disaster prevention performance were reviewed using the scientometric analysis method to review them. This analysis is a method of identifying trends in the field and deriving new knowledge and information based on data such as papers and literature. In this study, papers related to the disaster prevention performance of the Web of Science for the last 30 years from 1990 to 2021 were collected. Citespace, scientometric software, was used to identify authors, research institutes, countries, and research trends, including citation analysis. As a result of the analysis, consideration factors such as the the concept of asset evaluation were identified when making decisions related to urban disaster prevention performance. In the future, it is expected that prevention performance standards and procedures can be upgraded if the keywords are specified and the review of each technology is conducted.

Development of Storm Sewer Numerical Model for Simulation of Coastal Urban Inundation due to Storm Surge and Rainfall (폭풍해일과 강우에 의한 해안 도시 범람 수치모의를 위한 우수관망 수치모형의 개발)

  • Yoon, Sung Bum;Lee, Jaehwang;Kim, Gun Hyeong;Song, Ji Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.292-299
    • /
    • 2014
  • Since most of the researches on the coastal inundation due to typhoons have considered only storm surges, an additional inundation due to rainfall has been neglected. In general, typhoons are natural disasters being accompanied by the rainfall. Thus, it is essential to consider the effect of rainfall in the numerical simulation of coastal inundation due to storm surges. Because the rainwater is discharged to the sea through the storm sewer system, it should be included in the numerical simulation of storm surges to obtain reasonable results. In this study an algorithm that can deal with the effects of rainfall and sewer system is developed and combined with a conventional storm surge numerical model. To test the present numerical model various numerical simulations are conducted using the simplified topography for the cases including the inundation due to rainfall, the drainage of rainwater, the backflow of sea water, and the increase of sea water level due to drainage of rainwater. As a result, it is confirmed that the basic performance of the present model is satisfactory for various flow situations.

A Technique of Inland Drainage Control Considering flood Characteristics of the Han River (한강홍수특성을 고려한 내배수 처리기법)

  • Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.99-108
    • /
    • 1991
  • Rapid changes of urban hydrologic events need new management operation rule of detention reservoir which is essential outflow control system in urban area. Therefore, this study is to develop the outflow management method of Seoul city considering the Han river flood characteristics, to analyze the inundation of detention reservoir according to variation of design storm patterns, and to examine the safety of gate due to design flood water level. From this study, new operation rule is presented. The design storm patterns are determined by instantaneous intensity method and Huff's quartile method. And the inflow hydrograph of detention reservoir is obtained by applying ILLUDAS model and RRL method. The operation rule of existing drainage pump is designed to have linear relation between storage and pumping discharge. But in this study, it is effective for preventing inundation when the operation rule of drainage pump have Gaussian function which is combined the storage of detention reservoir with its inflow according to increasing or decreasing of inflow hydrograph.

  • PDF

The probabilistic estimation of inundation region using a multiple logistic regression analysis (다중 Logistic 회귀분석을 통한 침수지역의 확률적 도출)

  • Jung, Minkyu;Kim, Jin-Guk;Uranchimeg, Sumiya;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • The increase of impervious surface and development along the river due to urbanization not only causes an increase in the number of associated flood risk factors but also exacerbates flood damage, leading to difficulties in flood management. Flood control measures should be prioritized based on various geographical information in urban areas. In this study, a probabilistic flood hazard assessment was applied to flood-prone areas near an urban river. Flood hazard maps were alternatively considered and used to describe the expected inundation areas for a given set of predictors such as elevation, slope, runoff curve number, and distance to river. This study proposes a Bayesian logistic regression-based flood risk model that aims to provide a probabilistic risk metric such as population-at-risk (PAR). Finally, the logistic regression model demonstrates the probabilistic flood hazard maps for the entire area.

A Study on Relationships between Travel Time and Provision of Road Inundation Information in Heavy Rain and Snow using an Agent-based Simulation Model (폭우.폭설 시 침수 정보 전달과 통행시간 관계 연구 -에이전트 기반 모델을 활용하여-)

  • Na, Yu-Gyung;Lee, Seungho;Joh, Chang-Hyeon
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.262-274
    • /
    • 2013
  • Heavy rain and heavy snow as representative extreme weather are recently an issue in urban area. The paper aims at modeling the scenarios of evacuation that minimizes economic loss of the designated urban area with improving travel efficiency by providing road closure information facing an extremely heavy rainfall. The paper develops a model by using a NetLogo toolkit applied to the study area of Seocho-dong, Seocho-gu, Seoul. The model conducts a simulation of travel time under different scenarios of information provision. The simulation results show that it is efficient to provide the information of road closure to 20~40% of the drivers under the scenario of humid road or rainfall less than 20mm, whereas to 40~60% of the drivers under the scenario of heavy rainfall more than 20mm.

  • PDF

Numerical Simulations of Storm Surge/Coastal Flooding at Mokpo Coastal Zone by MIKE21 Model (MIKE 21 모형을 이용한 목포해역 해일/범람모의)

  • Moon, Seung-Rok;Park, Seon-Jung;Kang, Ju-Whan;Yoon, Jong-Tae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.348-359
    • /
    • 2006
  • The city of Mokpo suffers lowland inundation damages by sea water flooding even without harsh weather like a typhoon, due to the low level urban infrastructure facilities, oceanic environmental changes by constructions of seadike/seawall and sea level rise caused by global warming. This study performs constructing the simulation system which employs the MIKE21 software. And the system is applied to several typhoon- induced surges which had resulted in inundation at Mokpo. Virtual situation of flooding is simulated in case 59 cm of surge height, which had been occurred actually by RUSA(0215), coincides with Approx. H.H.W. Then the water level of 545 cm corresponds to the extreme high water level(544 cm) for 10 year return period after the construction of Geumho seawall. The results show rapid and broad inundation at Inner-Port, requiring additional preparations for flood protections.

Integration Model for Urban Flood Inundation Linked with Underground Space Flood Analysis Model (지하공간 침수해석모형과 연계한 도시침수해석 통합모형)

  • Lee, Chang-Hee;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.313-324
    • /
    • 2007
  • An irregular cell-based numerical model was developed to analyze underground space flooding. In this model, the flow characteristics in underground space were computed by link-node system. Also, the model can simulate the underground flood flow related to the influence of stairs and wall-structures. Empirical discharge formula were introduced to analyze weir-type flow for shopping mall, and channel-type flow for subway railroad respectively. The simulated results matched in reasonable range compared with the observed depth. The dual-drainage inundation analysis model and the underground space flood analysis model were integrated using visual basic application of ArcGIS system. The developed model can help the decision support system of flood control authority for redesigning and constructing flood prevention structures and making the potential inundation zone, and establishing flood-mitigation measures.

Impact of the Mekong River Flow Alteration on the Tonle Sap Lake in Cambodia

  • Lee, Giha;Kim, Joocheol;Jung, Kwansue;Lee, Hyunseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.231-231
    • /
    • 2015
  • Rapid development in the upper reaches of the Mekong River, in the form of construction of large hydropower dams and reservoirs, large irrigation schemes, and rapid urban development, is putting water resources under stress. Many scientific reports have pointed out that cascade dams along the Mekong River lead to serious problems: not only hydrologically but also a decline of agricultural productivity due to a decrease of sediment supply in the Mekong Delta and a change of fish amount due to drastic change of the water environment. Cambodia and Vietnam, located in the lowest Mekong basin, are gravely affected by radical changes of hydrologic regime due to Mekong River developments. In particular, the Tonle Sap Lake in Cambodia is very sensitive to the flood cycle and flow variation of the Mekong River as well as inflow water quality from the Mekong River. More than 50% of Cambodian GDP depends on the primary industries such as agriculture, fishing, and forestry, and the Tonle Sap Lake plays an important role to support the national economy in Cambodia. In addition, Cambodian people usually take nourishment from the fish of Tonle Sap Lake. This research aims to assess the impacts of the Mekong river flow alternation on the hydrologic regime of the Mekong River - Tonle Sap Lake. We carried out rainfall-runoff-inundation simulation using CAESER-LISFLOOD for integrated water resource management in the Tonle Sap Basin and then analyze flood inundation variation of the Tonle Sap Lake due to the scenarios. Furthermore, the simulated inundation maps were compared to MODIS satellite images for model verification and hydrologic prediction.

  • PDF