• Title/Summary/Keyword: upper stage launch vehicle

Search Result 43, Processing Time 0.017 seconds

A Mixing Head Integrated, Multi-Ignition Device for Liquid Methane Engine (액체메탄엔진용 믹싱헤드 일체형 다중점화장치)

  • Lim, Byoungjik;Lee, Junseong;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.54-65
    • /
    • 2022
  • We are developing a compact ignition device that can provide a multi-ignition capability for an upper stage methane engine of a two staged small satellite launch vehicle. Firstly, the multi-ignition device is designed and built as an integral part of an additively manufactured mixing head. Secondly, the ignition device requires no separate high-pressure vessels to store ignition propellants as they are branched out from the main feed lines for the mixing head. We performed experiments at various levels, including igniter autonomous tests, thrust chamber ignition and combustion tests on the new compact ignition device which is integrated in the thrust chamber of one-tonf class liquid oxygen/liquid methane engine, and confirmed stable ignition performance.

Development of the Spark Torch Igniter for the 450 N-scale Methane-Oxygen Rocket Engine (450 N급 메탄-산소 로켓 엔진을 위한 스파크 토치 점화기 개발)

  • Sinyoung Park;Edam Choi;Eunjo Han;Jin Geon Kim;Dahae Lee;Eunkwang Lee;Minwoo Lee
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.53-63
    • /
    • 2024
  • Adopting an engine igniter with high efficiency and ignition performance is essential for reliable operation of liquid rocket engines. In this study, we developed a spark torch igniter for a 450 N-scale methane-oxygen liquid rocket engine by conducting numerical analyses, igniter manufacturing and validation. Specifically, we conducted a parametric study for maximizing the enthalpy at the igniter exit, specifically by adjusting the mass flow rate, nozzle area ratio, fuel-oxidizer mixture ratio, and the igniter length-to-diameter. The heat transferred via the igniter nozzle exit was computed using 3-dimensional numerical simulations. We also manufactured and tested the igniter based on a deduced design to confirm ignition performance of the designed spark torch igniter. The igniter developed through this study could contribute to the development of practical propulsion systems such as upper-stage engines of small launch vehicles.

Pogo Suppressor Design of a Space Launch Vehicle using Multiple-Objective Optimization Approach (다목적함수 최적화 기법을 이용한 우주발사체의 포고억제기 설계)

  • Yoon, NamKyung;Yoo, JeongUk;Park, KookJin;Shin, SangJoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • POGO is a dynamic axial instability phenomenon that occurs in liquid-propelled rockets. As the natural frequencies of the fuselage and those of the propellant supply system become closer, the entire system will become unstable. To predict POGO, the propellant (oxidant and fuel) tank in the first stage is modeled as a shell element, and the remaining components, the engine and the upper part, are modeled as mass-spring, and structural analysis is performed. The transmission line model is used to predict the pressure and flow perturbation of the propellant supply system. In this paper, the closed-loop transfer function is constructed by integrating the fuselage structure and fluid modeling as described above. The pogo suppressor consists of a branch pipe and an accumulator that absorbs pressure fluctuations in a passive manner and is located in the middle of the propellant supply system. The design parameters for its design optimization to suppress the decay phenomenon are set as the diameter, length of the branch pipe, and accumulator. Multiple-objective function optimization is performed by setting the energy minimization of the closed loop transfer function in terms of to the mass of the pogo suppressor and that of the propellant as the objective function.