DOI QR코드

DOI QR Code

Pogo Suppressor Design of a Space Launch Vehicle using Multiple-Objective Optimization Approach

다목적함수 최적화 기법을 이용한 우주발사체의 포고억제기 설계

  • Yoon, NamKyung (Institute of Advanced Aerospace Technology, Seoul National University) ;
  • Yoo, JeongUk (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Park, KookJin (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Shin, SangJoon (Institute of Advanced Aerospace Technology, Seoul National University)
  • Received : 2020.10.16
  • Accepted : 2020.12.13
  • Published : 2021.02.28

Abstract

POGO is a dynamic axial instability phenomenon that occurs in liquid-propelled rockets. As the natural frequencies of the fuselage and those of the propellant supply system become closer, the entire system will become unstable. To predict POGO, the propellant (oxidant and fuel) tank in the first stage is modeled as a shell element, and the remaining components, the engine and the upper part, are modeled as mass-spring, and structural analysis is performed. The transmission line model is used to predict the pressure and flow perturbation of the propellant supply system. In this paper, the closed-loop transfer function is constructed by integrating the fuselage structure and fluid modeling as described above. The pogo suppressor consists of a branch pipe and an accumulator that absorbs pressure fluctuations in a passive manner and is located in the middle of the propellant supply system. The design parameters for its design optimization to suppress the decay phenomenon are set as the diameter, length of the branch pipe, and accumulator. Multiple-objective function optimization is performed by setting the energy minimization of the closed loop transfer function in terms of to the mass of the pogo suppressor and that of the propellant as the objective function.

포고 현상은 액체추진 로켓에서 발생하는 축방향의 동적 불안정 진동이다. 동체의 고유진동수와 추진제 공급계의 주파수가 가까와 지면 전체 시스템이 불안정 현상을 보인다. 포고 현상을 예측하기 위해 1단의 추진제 (산화제 및 연료) 탱크는 쉘 요소로, 나머지 구성 요소인 엔진 및 상단은 mass-spring으로 모델링하여 구조해석을 수행하였다. 추진제 공급계의 압력 및 유량 섭동예측에는 transmission line model이 사용되었다. 본 논문에서는 이와 같이 수행된 구조 및 유체 모델링을 통합하여 폐루프 전달함수를 구성하였다. 포고 억제기는 수동적인 방법으로 압력 섭동을 흡수하는 분 기관 및 accumulator로 구성되며 추진제 공급계 중간에 위치한다. 발사체의 비행과정 동안 포고현상을 억제하는 설계 최적화를 위한 설계변수로는 분기관 및 accumulator의 직경 및 길이로 설정하였다. 목적함수로는 포고 억제기의 질량, 그리고 추진제 질량에 따른 폐루프 전달함수의 에너지 최소화로 설정하여 다목적함수 최적화를 수행하였다.

Keywords

Acknowledgement

본 연구는 서울대학교 차세대 우주추진 연구센터와 연계된 미래창조과학부의 재원으로 한국연구재단의 지원을 받아 수행한 선도연구센터지원 사업(NRF-2013R1A5A1073861)의 연구 결과입니다.

References

  1. Larsen, C.E., NASA Experience with Pogo in Human Spaceflight Vehicles, NATO RTO Symposium ATV-152 on Limit-Cycle Oscillations and Other Amplitude-Limited, Self-Excited Vibrations, May 5, 2008.
  2. Fenwick, J., "POGO," Threshold: Pratt & Whitney Rocketdyne's Engineering, Journal of Power Technology, 1992.
  3. Hopkins Jr., J., Hopkins, J. and Isakowitz, S., International Reference Guide to Space Launch Systems, Fourth Edition, American Institute of Aeronautics and Astronautics, Inc. 2004.
  4. Rubin, S., "Longitudinal Instability of Liquid Rockets Due to Propulsion Feedback (POGO)," J. Spacecraft and Rockets, Vol. 3, No. 8, pp. 1188-1195, 1966. https://doi.org/10.2514/3.28626
  5. Anonymous, "rstool," https://kr.mathworks.com/help/stats/rstool.html.
  6. Tian, Y., Cheng R., Zhang X. and Jin, Y., "PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization [Educational Forum]," IEEE Computational Intelligence Magazine, Vol. 12, No. 4, pp. 73-87, 2017. https://doi.org/10.1109/MCI.2017.2742868
  7. Michalopoulos, C.D., Clark, R.W. and Doiron, H.H., "Fourth Annual Thermal and Fluids Analysis Workshop : Acoustic Modes in Fluid Networks," NASA Conference, Cleveland, Ohio, US., 1992.
  8. Oppenheim, B.W. and Rubin, S., "Advanced Pogo Stability Analysis for Liquid Rockets," Journal of Spacecraft and Rockets, Vol. 30, No. 3, pp. 360-373, 1993. https://doi.org/10.2514/3.25524
  9. Park, K.J., Yoo, J.U., Lee, S.H., Nam, J.H., Kim, H.J., Lee, J.Y., Roh, T.S., Yoh, J.J., Kim, C.A. and Shin, S.J., "Pogo Accumulator Optimization Based on Multiphysics of Liquid Rockets and Neural Networks," Journal of Spacecraft and Rockets 2020, pp. 809-822.
  10. Park, K.J., Lee, S.H., Lee, S.G. and Shin, S.J., "Longitudinal Characteristics Analysis of a Space Launch Vehicle using One- and Three-Dimensional Combined Modeling for Pogo Prediction," 17-19 September 2018, Orlando, FL, 2018 AIAA SPACE and Astronautics Forum and Exposition.
  11. Anonymous, "Advanced Dynamic Analysis User's Guide," DOC9180, MSC.Software Corporation 2014.
  12. Lee, D,Y. and Choi, H.S., "A Study on the sloshing of Cargo Tanks Including Hydroelastic Effects," Journal of the Society of Naval Architecture of Korea, Vol. 35, No. 4, pp. 27-31, 1998.
  13. Byeon, J.H., Cho, H.J., Baek, S.J., Prabowo, A.R., Bae, D.M. and Sohn, J.M., "Numerical approaches in idealizing mass of fluid in tank for ship vibration analysis," MATEC Web of Conferences, Vol. 159, 2018.