• Title/Summary/Keyword: upper level divergence

Search Result 14, Processing Time 0.023 seconds

The Characteristics of Heavy Rainfall over the Korean Peninsular - Case Studies of Heavy Rainfall Events during the On- and Off- Changma Season- (장마기와 장마 후의 한반도 집중호우 특성 사례분석)

  • Chung, Hyo-Sang;Chung, Yun-Ang;Kim, Chang-Mo;Ryu, Chan-Su
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1511-1521
    • /
    • 2012
  • An attempt is made to analyse characteristic features of heavy rainfalls which occur at the metropolitan area of the Korean peninsular the on- and off- Changma season. For this, two representative heavy rainfall episodes are selected; one is the on-Changma season wherein a torrential rain episode happened at Goyang city on 12 July 2006, and the other is the off-Changma season, a heavy rainfall event in Seoul on 21 September 2006. Both recorded considerable amounts of precipitation, over 250mm in a half-day, which greatly exceeded the amount expected by numerical prediction models at those times, and caused great damage to property and life in the affected area. Similarities in the characteristics of both episodes were shown by; the location of upper-level jet streak and divergence fields of the upper wind over heavy rainfall areas, significantly high equivalent potential temperatures in the low atmospheric layer due to the entrainment of hot and humid air by the low-level jet, and the existence of very dry air and cold air pool in the middle layer of the atmosphere at the peak time of the rainfall events. Among them, differences in dynamic features of the low-level jet and the position of rainfall area along the low-level jet are remarkable.

New record of Codium lucasii (Bryopsidales, Chlorophyta) in Korea

  • An, Jae Woo;Nam, Ki Wan
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.647-654
    • /
    • 2015
  • A prostrate species of Codium (Bryopsidales, Chlorophyta) was collected from Daejin on the eastern coast of Korea. This alga is morphologically characterized by a prostrate, adherent or pulvinate, dark green thallus that is tightly attached to substratum. The utricles are strongly grouped and cylindrical to slightly clavate. Their apex is rounded to capitated, and it frequently has an alveolate ornament. Hair scars are found in the upper portion of the utricle. The gametangia grow on a short pedicel in the upper part of the utricle. In the phylogenetic tree based on molecular data, this alga is placed in the same clade as C. mozambiquense in UPGMA analysis, and nests in a sister clade of C. lucasii subsp. capense and C. mozambiquense in ML and NJ analyses. However, the genetic distance between the sequences of the Korean alga and the two species is 1.3-1.9%, while that between the Korean alga and C. lucasii from Japan is 1.1% within intraspecific range. The divergence value between the Korean alga and C. lucasii from the type locality (Australia) is 2.7% considered to be interspecific range. As based on this genetic divergence value, the Korean alga together with Japanese C. lucasii can be separated from genuine C. lucasii from the type locality. However, the Korean alga is identified as C. lucasii until those entities are morphologically characterized in species level. This is the first record of C. lucasii in Korea

Study of the RBTRAN Code for Upper Plenum Analysis in Very Small LOCA (매우 작은 규모의 LOCA에 있어서 Upper Plenum분석을 위한 RETRAN코드의 연구)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.125-130
    • /
    • 1984
  • In the application of the RETRAN code to the analysis of very small LOCA one of main concerns is placed on use of the bubble rise model in the upper plenum, because the bubble rise model nay cause a numerical divergence problem and coefficients used to describe it are based on experimental results of large LOCA. In order to solve this problem, a method, which enables us to predict the mixture level in the upper plenum without use of the bubble rise model, was proposed. For this method the local void distribution in the core and upper plenum was derived by using a simplified slip model. It was shown that results predicted from the derived equation are in excellent agreement with experimental data. Additionally it was found that local void in the upper plenum has a uniform distribution unlike a linear distribution in large LOCA. Communication between the upper plenum and upper head was investigated. By introducing the concept of Taylor instability, it was proved that counter-current Hon between them is possible.

  • PDF

Numerical Case Study of Heavy Rainfall Occurred in the Central Korean Peninsula on July 26-28, 1996

  • Kim, Young-Ah;Oh, Jai-Ho
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.26 no.1
    • /
    • pp.15-29
    • /
    • 1998
  • The numerical simulation of heavy precipitation event occurred in the central Korean Peninsula on July 26-28, 1996 was performed using the fine mesh model. ARPS (Advanced Regional Prediction System) developed by the CAPS (Center for Analysis and Prediction of Storms). Usually, the heavy rainfalls occurred at late July in the Korean Peninsula were difficult to predict, and showed very strong rainfall intensity. As results, they caused a great loss of life and property. As it usual, this case was unsuccessful to predict the location of rain band and the precipitation intensity with the coarse-mesh model. The same case was, however, simulated well with fine-mesh storm-scale model, ARPS. Moisture band at 850 hPa appeared along the Changma Front in the area of China through central Korea passed Yellow Sea. Also the low-level jet at 700 hPa existed in the Yellow Sea through central Korea and they together offered favorable condition to induce heavy rainfall in that area. The convective activities developed to a meso-scale convective system were observed at near the Yangtze River and moved to the central Korean Peninsula. Furthermore, the intrusion of warm and moist air, origninated from typhoon, into the Asia Continent might result in heavy rainfall formation through redistribution of moisture and heat. In the vertical circulation, the heavy rainfall was formed between the upper- and low-level jets, especially, the entrance region of the upper-level jet above the exit the region of the low-level jet. The low level convergence, the upper level divergence and the strong vertical wind were organized to the very north of the low level jet and concentrated on tens to hundreds km horizontal distance. These result represent the upper- and low-level jets are one of the most important reasons on the formation of heavy precipitation.

  • PDF

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314) (태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석)

  • Choi, Ki-Seon;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1051-1061
    • /
    • 2007
  • The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.

Distribution of Precipitation on the Korean Peninsula Associated with the Weakening of Tropical Cyclones (태풍의 약화와 관련된 한국의 강수량 분포)

  • Hwang, Ho-Seong;Byun, Hi-Ryong;Lee, Sang-Min;Choi, Ki-Seon;Lee, Ji-Sun
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.322-334
    • /
    • 2010
  • Spatiotemporal characteristics of precipitation in Korea, associated with the weakening of Tropical Cyclones (TCs) around the Korean Peninsula ($32-36^{\circ}N$, $122-132^{\circ}E$) over the last 30 years (1979-2008), were investigated. Weakened TCs are classified as WEC (Weakened to Extratropical Cyclone) and WTD (Weakened to Tropical Depression). In WEC, precipitation was evenly distributed all over the Korean Peninsula and the greater precipitation was recorded in the southern coast. In WTD, the most precipitation was recorded in the southern coast but low precipitation was recorded in the central and inland areas of Korea. The difference of precipitation between WEC and WTD was not statistically significant in Region 2 (Jeollanam-do, Gyeongsangnam-do, southeastern part of Gyeongsangbuk-do, Jeju-do); however, the precipitation resulting from WEC was greater than that resulting from WTD in Region 1 (central area of Korea, Jeollabuk-do, inland of Gyeongsangbuk-do). In WEC, the developed upper-level potential vorticity (PV) and low-level temperature trough shifted to the northwest of TCs approaching Korea. In addition, an upper-level jet stream and strong divergence field were observed to the northeast of the TCs. It was assumed that these meteorological factors had induced baroclinic instability and diabatic process, which created a large precipitation area around the TCs. However, the intense PV, temperature trough, jet stream were not observed in WTD, which created a small precipitation area around the TCs.

Assessment of MJO Simulation with Global Coupled Model 2 and 3.1 (Global Coupled 모델 2와 3.1의 MJO 모의성능 평가)

  • Moon, Ja-Yeon;Kim, Ki-Young;Cho, Jeong-A;Yang, Young-Min;Hyun, Yu-Kyung;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.235-246
    • /
    • 2022
  • A large number of MJO skill metrics and process-oriented MJO simulation metrics have been developed by previous studies including the MJO Working Group and Task Force. To assess models' successes and shortcomings in the MJO simulation, a standardized set of diagnostics with the additional set of dynamics-oriented diagnostics are applied. The Global Coupled (GC) model developed for the operation of the climate prediction system is used with the comparison between the GC2 and GC3.1. Two GC models successfully capture three-dimensional dynamic and thermodynamic structure as well as coherent eastward propagation from the reference regions of the Indian Ocean and the western Pacific. The low-level moisture convergence (LLMC) ahead of the MJO deep convection, the low-level westerly and easterly associated with the coupled Rossby-Kelvin wave and the upper-level divergence are simulated successfully. The GC3.1 model simulates a better three-dimensional structure of MJO and thus reproduces more realistic eastward propagation. In GC2, the MJO convection following the LLMC near and east of the Maritime Continent is much weaker than observation and has an asymmetric distribution of both low and upper-level circulation anomalies. The common shortcomings of GC2 and GC3.1 are revealed in the shorter MJO periods and relatively weak LLMC as well as convective activity over the western Indian Ocean.

Analysis of Kinematic Characteristics of Synoptic Data for a Heavy Rain Event(25 June 2006) Occurred in Changma Front (장마전선에서 발생한 2006년 6월 25일의 호우 사례에 대한 종관자료의 운동학적 특성 분석)

  • Kim, Mie-Ae;Heo, Bok-Haeng;Kim, Kyung-Eak;Lee, Dong-In
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.37-51
    • /
    • 2009
  • Kinematic characteristics of a heavy rainfall event occurred in Changma front are analyzed using synoptic weather charts, satellite imagery and NCEP(National Centers for Environmental Prediction) / NCAR(National Centers for Atmospheric Research) reanalysis data. The heavy rainfall is accompanied with mesoscale rain clouds developing over the Southwest region of Korea during the period from 0300 LST to 2100 LST 25 June 2006. The surface cyclone in the Changma front is generated and developed rapidly when it meets following vertical conditions: The maximum value of relative vorticity is appeared at 700 hPa and is extended gradually near the surface. It is thought that the vertical structure of relative vorticity is closely related with the descent of strong wind zone exceeding $10ms^{-1}$. The jet core at 200 hPa is shifted southward and extended downward and the low-level jet stream associated with upper-level jet stream appeared at 850 hPa. Kinematic features of heavy rainfall system at cyclone-generating point are as follows: In the generating stage of cyclone, the relative vorticity below 850 hPa increased and the convergence below 850 hPa and the divergence at 400 hPa are intensified by southward movement of jet core at 200 hPa. The heavy rainfall system seems to locate to the south of the exit region of upper-level jet streak; In the developing stage of cyclone, the relative vorticity below 850 hPa and the convergence near surface are further strengthened and upward vertical velocity between 850 hPa and 200 hPa is increased.

Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model

  • Feng, Chengdong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Modelling incompressible, neutrally stratified, barotropic, horizontally homogeneous and steady-state atmospheric boundary layer (ABL) is an important aspect in computational wind engineering (CWE) applications. The ABL flow can be viewed as a balance of the horizontal pressure gradient force, the Coriolis force and the turbulent stress divergence. While much research has focused on the increase of the wind velocity with height, the Ekman layer effects, entailing veering - the change of the wind velocity direction with height, are far less concerned in wind engineering. In this paper, a modified k-ε model is introduced for the ABL simulation considering wind veering. The self-sustainable method is discussed in detail including the precursor simulation, main simulation and near-ground physical quantities adjustment. Comparisons are presented among the simulation results, field measurement values and the wind profiles used in the conventional wind tunnel test. The studies show that the modified k-ε model simulation results are consistent with field measurement values. The self-sustainable method is effective to maintain the ABL physical quantities in an empty domain. The wind profiles used in the conventional wind tunnel test have deficiencies in the prediction of upper-level winds. The studies in this paper support future practical super high-rise buildings design in CWE.

Three Cases with the Multiple Occurrences of Freezing Rain in One Day in Korea (12 January 2006; 11 January 2008; and 22 February 2009)

  • Park, Chang-Kyun;Byun, Hi-Ryong
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.31-49
    • /
    • 2015
  • From the hourly data of 75 Korean weather stations over a 12-year period (2001~2012), this study has chosen three cases (January 12, 2006; January 11, 2008; and February 22, 2009) of multiple freezing rains and investigated the atmospheric circulations that seemed to cause the events. As a result, the receding high pressure type (2006), prevailing high pressure type (2008), and warm front type (2009) are confirmed as synoptic patterns. In all three cases, freezing rain was found in regions with a strong ascending current near the end point of a low-level jet that carried the warm humid air from low latitudes. The strong ascending current resulted from lower-level convergence and upper-level divergence. In 2006 and 2009, the melting process was confirmed. In 2008, the supercooled warm rain process (SWRP) was confirmed. In contrast to existing SWRP theory, it was found that the cool air produced at the middle atmosphere and near the earth's surface led to the formation of freezing rain. The sources of this cool air were supposed to be the evaporative latent heat and the cold advection coming from the northeast. On the other hand, a special case was detected, in which the freezing rain occurred when both the soil surface temperature and surface air temperature were above $0^{\circ}C$. The thickness distributions related to freezing rain in Korea were found to be similar to those in North America. A P-type nomogram was considered for freezing rain forecasting; however, it was not relevant enough to Korea, and few modifications were needed.