DOI QR코드

DOI QR Code

Distribution of Precipitation on the Korean Peninsula Associated with the Weakening of Tropical Cyclones

태풍의 약화와 관련된 한국의 강수량 분포

  • Hwang, Ho-Seong (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Byun, Hi-Ryong (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Lee, Sang-Min (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Choi, Ki-Seon (National Typhoon Center) ;
  • Lee, Ji-Sun (Department of Environmental Atmospheric Sciences, Pukyong National University)
  • 황호성 (부경대학교 환경대기과학과) ;
  • 변희룡 (부경대학교 환경대기과학과) ;
  • 이상민 (부경대학교 환경대기과학과) ;
  • 최기선 (기상청 국가태풍센터) ;
  • 이지선 (부경대학교 환경대기과학과)
  • Received : 2010.06.07
  • Accepted : 2010.07.14
  • Published : 2010.08.31

Abstract

Spatiotemporal characteristics of precipitation in Korea, associated with the weakening of Tropical Cyclones (TCs) around the Korean Peninsula ($32-36^{\circ}N$, $122-132^{\circ}E$) over the last 30 years (1979-2008), were investigated. Weakened TCs are classified as WEC (Weakened to Extratropical Cyclone) and WTD (Weakened to Tropical Depression). In WEC, precipitation was evenly distributed all over the Korean Peninsula and the greater precipitation was recorded in the southern coast. In WTD, the most precipitation was recorded in the southern coast but low precipitation was recorded in the central and inland areas of Korea. The difference of precipitation between WEC and WTD was not statistically significant in Region 2 (Jeollanam-do, Gyeongsangnam-do, southeastern part of Gyeongsangbuk-do, Jeju-do); however, the precipitation resulting from WEC was greater than that resulting from WTD in Region 1 (central area of Korea, Jeollabuk-do, inland of Gyeongsangbuk-do). In WEC, the developed upper-level potential vorticity (PV) and low-level temperature trough shifted to the northwest of TCs approaching Korea. In addition, an upper-level jet stream and strong divergence field were observed to the northeast of the TCs. It was assumed that these meteorological factors had induced baroclinic instability and diabatic process, which created a large precipitation area around the TCs. However, the intense PV, temperature trough, jet stream were not observed in WTD, which created a small precipitation area around the TCs.

최근 30년간(1979-2008년) 한반도 주변($32-36^{\circ}N$, $122-132^{\circ}E$)에서 태풍이 약화될 때 한국에서 나타나는 시공간적 강수 특징을 분석하였다. 약화 유형은 온대저기압으로 약화되는 태풍(Weakened to Extratropical Cyclone, WEC)과 열대성 저압부로 약화되는 태풍(Weakened to Tropical Depression, WTD)으로 구분하였다. WEC의 경우, 강수량은 전국에 걸쳐 골고루 분포하였으며 남해안에서 가장 많았다. WTD의 경우, 강수량은 남해안에서 가장 많았지만 중부 및 내륙지역은 적었다. 두 경우의 강수량 차이는 Region 2(전라남도, 경상남도, 경상북도 남동부 지역, 제주도)에서는 거의 없었으며, Region 1(중부지방, 전라북도, 경상북도 내륙)에서는 WTD보다 WEC일 때 강수량이 더 많았다. 태풍이 한반도로 접근 할 때 WEC의 경우 태풍의 북서쪽에는 상층의 발달된 잠재소용돌이도와 하층의 온도골이 위치하고 있었으며, 태풍의 북동쪽에는 상층 제트 및 강한 상층 발산역이 위치하였다. 이는 태풍 전면에 경압교란과 비단열 과정을 발달시켰고 이로 인해 강수영역이 넓게 형성된 것으로 추측되었다. 그러나 WTD의 경우에서는 강한 잠재소용돌이도나 온도골, 상층제트가 태풍 주변에 나타나지 않았으며, 이로 인해 강수영역이 좁게 형성되었다.

Keywords

References

  1. 권혁조, 김지영, 2005, 태풍 민들레의 온대저기압화 과정에 대하여. 대기, 15, 17-25.
  2. 기상청, 1996, 태풍백서. 기상청, 서울, 261 p.
  3. 김진석, 유재훈, 2002, 태풍전면에서의 강원도 영동지방 집중호우 연구. 대기, 12, 140-143.
  4. 양진관, 오주덕, 2001, 호우 현상을 초래하는 태풍 전면 수렴대 분석. 대기, 11, 165-168.
  5. 장용환, 2002, 태풍주변 하층기류에 의한 동해안지방 집중호우 진단. 대기, 12, 456-459.
  6. Browning, K.A., Vaughan, G., and Panagi, P., 1998, Analysis of an extratropical cyclone after its reintensification as a warm core extratropical cyclone. Quarterly Journal of the Royal Meteorological Society, 124, 2329-2356. https://doi.org/10.1002/qj.49712455108
  7. DiMego, G.J. and Bosart, L.F., 1982a, The transformation of tropical storm Agnes into an extratropical cyclone. Part I: The observed fields and vertical motion computations. Monthly Weather Review, 110, 385-411. https://doi.org/10.1175/1520-0493(1982)110<0385:TTOTSA>2.0.CO;2
  8. DiMego, G.J. and Bosart, L.F., 1982b, The transformation of tropical storm Agnes into an extratropical cyclone. Part II: Moisture, vorticity, and kinetic energy budgets. Monthly Weather Review, 110, 412-433. https://doi.org/10.1175/1520-0493(1982)110<0412:TTOTSA>2.0.CO;2
  9. Foley, G.R. and Hanstrum, B.N., 1994, The capture of tropical cyclones by cold fronts off of the west coast of Australia. Weather Forecasting, 9, 577-592. https://doi.org/10.1175/1520-0434(1994)009<0577:TCOTCB>2.0.CO;2
  10. Harr, P.A. and Elsberry, R.L., 2000, Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Monthly Weather Review, 128, 2613-2633. https://doi.org/10.1175/1520-0493(2000)128<2613:ETOTCO>2.0.CO;2
  11. Harr, P.A., Elsberry, R.L., and Hogan, T.F., 2000, Extratropical transition of tropical cyclones over the western North Pacific. Part II: The impact of midlatitude circulation characteristics. Monthly Weather Review, 128, 2634-2653. https://doi.org/10.1175/1520-0493(2000)128<2634:ETOTCO>2.0.CO;2
  12. Holton, J.R., 1992, An Introduction to Dynamic Meteorology. (2nd ed.) Academic Press, CA, USA, 511 p.
  13. Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D., 1996, The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society, 77, 437-471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  14. Kim, J.-H., Ho, C.-H., and Lee, M.-H., 2006, Large increase in heavy rainfall associated with tropical cyclone landfalls in Korea after the late 1970s. Geophysical Research Letters, 33, L18706, doi:10.1029/2006GL027430.
  15. Klein, P.M., Harr, P.A., and Elsberry, R.L., 2000, Extratropical transition of western North Pacific tropical cyclones: An overview and conceptual model of the transformation stage. Weather and Forecasting, 15, 373-396. https://doi.org/10.1175/1520-0434(2000)015<0373:ETOWNP>2.0.CO;2
  16. Matano, H. and Sekioka, M., 1971, Some aspects of the extratropical transformation of a tropical cyclone. Journal of Meteorological Society of Japan, 49, 736-743.
  17. Newton, C.W. and Trevisan, A., 1984, Clinogenesis and frontogenesis in jet-stream waves. Part I: Analytical relations to wave structure. Journal of Atmospheric Sciences, 41, 2717-2734. https://doi.org/10.1175/1520-0469(1984)041<2717:CAFIJS>2.0.CO;2
  18. Ritchie, E.A., 2005, Simulated precipitation structure of the extratropical transition of tropical cyclones. 11th Conference on Mesoscale Processes, Albuquerque, NM, USA.
  19. Sekioka, M., 1956a, A hypothesis on complex of tropical and extratropical cyclones for typhoon in the middle latitudes. I. Synoptic structure of Typhoon Marie passing over the Japan Sea. Journal of Meteorological Society of Japan, 34, 276-287. https://doi.org/10.2151/jmsj1923.34.5_276
  20. Sekioka, M., 1956b, A hypothesis on complex of tropical and extratropical cyclones for typhoon in the middle latitudes. II. Synoptic structure of Typhoons Ouise, Kezia, and Jane passing over the Japan Sea. Journal of Meteorological Society of Japan, 34, 336-345. https://doi.org/10.2151/jmsj1923.34.6_336
  21. Sekioka, M., 1957, A hypothesis on complex of tropical and extratropical cyclones for typhoon in the middle latitudes. III. Examples of typhoon not accompanied by extratropical cyclone in the middle latitudes. Journal of Meteorological Society of Japan, 35, 170-173. https://doi.org/10.2151/jmsj1923.35.3_170
  22. Shapiro, M.A. and Kennedy, P.J., 1981, Research aircraft instruments of jet stream geostrophic and ageostrophic winds. Journal of Atmospheric Sciences, 38, 2642-2652. https://doi.org/10.1175/1520-0469(1981)038<2642:RAMOJS>2.0.CO;2
  23. Shi, J.J., Chang, S., and Raman, S., 1997, Interaction between Hurricane Florence (1988) and an uppertropospheric westerly trough. Journal of Atmospheric Sciences, 54, 1231-1247. https://doi.org/10.1175/1520-0469(1997)054<1231:IBHFAA>2.0.CO;2
  24. Sinclair, M.R., 1993, Synoptic-scale diagnosis of the extratropical transition of a southwest Pacific tropical cyclone. Monthly Weather Review, 121, 941-960. https://doi.org/10.1175/1520-0493(1993)121<0941:SSDOTE>2.0.CO;2
  25. Ziv, B. and Paldor, N., 1999, The divergence fields associated with time-dependent jet streams. Journal of Atmospheric Sciences, 56, 2717-2734.

Cited by

  1. The Effects of Typhoon Initialization and Dropwindsonde Data Assimilation on Direct and Indirect Heavy Rainfall Simulation in WRF model vol.36, pp.5, 2015, https://doi.org/10.5467/JKESS.2015.36.5.460
  2. The Intensification of Walker Circulation over the Past 15 Years from 1999 and Its Relation to TC Activity in the Western North Pacific vol.37, pp.6, 2016, https://doi.org/10.5467/JKESS.2016.37.6.359