• Title/Summary/Keyword: upper and lower bounds

Search Result 252, Processing Time 0.028 seconds

Design of Survivable Communication Networks with High-connectivity Constraints

  • Koh, Seok J.;Lee, Chae Y.
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.3
    • /
    • pp.59-80
    • /
    • 1997
  • Designing highly survivable interoffice telecommunication networks is considered. The problem is formulated as a minimum-cost network design problem with three node connectivity constraints. These valid and facet-defining inequalities for the convex hull of the solution are presented. A branch and cut algorithm is proposed based on the inequalities to obtain the optimal solution. With the lower bound by the cutting plane algorithm, a delete-ink heuristic is proposed to otain a good upper bound in the branch and bound procedure. The effeciveness of the branch and cut algorithm is demonstrated with computational results for a variety of problem sets : different lower bounds, two types of link costs and large number of links. The cutting plane procedure based on the three inequalities provides excellent lower bounds to the optimal solutions.

  • PDF

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

A Graphical Method for Evaluating the Mixture Component Effects of Ridge Regression Estimator in Mixture Experiments

  • Jang, Dae-Heung
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • When the component proportions in mixture experiments are restricted by lower and upper bounds multicollinearity appears all too frequently. The ridge regression can be used to stabilize the coefficient estimates in the fitted model. I propose a graphical method for evaluating the mixture component effects of ridge regression estimator with respect to the prediction variance and the prediction bias.

  • PDF

Bounds for Network Reliability

  • Jeong, Mi-Ok;Lim, Kyung-Eun;Lee, Eui-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2005
  • A network consisting of a set of N nodes and a set of links is considered. The nodes are assumed to be perfect and the states of links to be binary and associated to each other. After defining a network structure function, which represents the state of network as a function of the states of links, we obtain some lower and upper bounds on the network reliability by adopting minmax principle and minimal path and cut set arguments. These bounds are given as functions of the reliabilities of links. The bridge network is considered as an example.

  • PDF

A Study on the Approximating Reliability Analysis of communication Networks (통신망의 신뢰도 근사해석에 관한 연구)

  • 유재영;오영환
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.145-149
    • /
    • 1991
  • In this paper, an algorithm is proposed to analyze the approximating reliability of the capacity considered communication networks. In the case ofthe former methods to evaluate the source-to-termianl node reliability, it is very difficult to contract and delete the jointed terms in the simple path group. Therefore, the reliability bounds are used and compared to the exact reliability by TURBO PROLOG, the natural lanquage of artficial intelligence. In the reliability bounds, the upper bound used the valid cutset that isthe group of simple path and the lower bound used the minimal cutset by complement operation and the esact reiability is compared to this reliability bounds.

ON BOUNDS FOR THE DERIVATIVE OF ANALYTIC FUNCTIONS AT THE BOUNDARY

  • Ornek, Bulent Nafi;Akyel, Tugba
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.785-800
    • /
    • 2021
  • In this paper, we obtain a new boundary version of the Schwarz lemma for analytic function. We give sharp upper bounds for |f'(0)| and sharp lower bounds for |f'(c)| with c ∈ ∂D = {z : |z| = 1}. Thus we present some new inequalities for analytic functions. Also, we estimate the modulus of the angular derivative of the function f(z) from below according to the second Taylor coefficients of f about z = 0 and z = z0 ≠ 0. Thanks to these inequalities, we see the relation between |f'(0)| and 𝕽f(0). Similarly, we see the relation between 𝕽f(0) and |f'(c)| for some c ∈ ∂D. The sharpness of these inequalities is also proved.

Sliding Mode Control Using the Lower Bound of Control Gain (제어이득의 하한을 이용한 새로운 슬라이딩 모드제어)

  • 유병국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.664-668
    • /
    • 2003
  • A new sliding mode control method based on the lower bound of control gain is presented. Although the magnitube of the proposed control input is larger than that of the conventional control input using both lower and upper bounds, the positive-negative exchanging chattering is reduced and reaching mode is shorter. Because the proposed scheme needs only the lower bound of control gain, it is applicable to the system whose upper bound of control gain is doubtful to determine such as the control gain depends on the system states. It is proved that the proposed control method guarantees the sliding condition. The analysis of differences between the conventional method and the proposed method is given. The validity of the proposed control strategy is shown through a 2nd-order nonlinear system example.

GENERALIZED CHRISTOFFEL FUNCTIONS

  • Joung, Haewon
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.149-160
    • /
    • 2010
  • Let $W(x)={\prod}_{k=1}^m{\mid}x-x_k{\mid}^{{\gamma}_k}{\cdot}{\exp}(-{\mid}x{\mid}^{\alpha})$. Associated with the weight W, upper and lower bounds of the generalized Christoffel functions for generalized nonnegative polynomials are obtained.

Real-time Location Tracking System Using Ultrasonic Wireless Sensor Nodes (초음파 무선 센서노드를 이용한 실시간 위치 추적 시스템)

  • Park, Jong-Hyun;Choo, Young-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.711-717
    • /
    • 2007
  • Location information will become increasingly important for future Pervasive Computing applications. Location tracking system of a moving device can be classified into two types of architectures: an active mobile architecture and a passive mobile architecture. In the former, a mobile device actively transmits signals for estimating distances to listeners. In the latter, a mobile device listens signals from beacons passively. Although the passive architecture such as Cricket location system is inexpensive, easy to set up, and safe, it is less precise than the active one. In this paper, we present a passive location system using Cricket Mote sensors which use RF and ultrasonic signals to estimate distances. In order to improve accuracy of the passive system, the transmission speed of ultrasound was compensated according to air temperature at the moment. Upper and lower bounds of a distance estimation were set up through measuring minimum and maximum distances that ultrasonic signal can reach to. Distance estimations beyond the upper and the lower bounds were filtered off as errors in our scheme. With collecting distance estimation data at various locations and comparing each distance estimation with real distance respectively, we proposed an equation to compensate the deviation at each point. Equations for proposed algorithm were derived to calculate relative coordinates of a moving device. At indoor and outdoor tests, average location error and average location tracking period were 3.5 cm and 0.5 second, respectively, which outperformed Cricket location system of MIT.

Dynamic response analysis for structures with interval parameters

  • Chen, Su Huan;Lian, Hua Dong;Yang, Xiao Wei
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.299-312
    • /
    • 2002
  • In this paper, a new method to solve the dynamic response problem for structures with interval parameters is presented. It is difficult to obtain all possible solutions with sharp bounds even an optimum scheme is adopted when there are many interval structural parameters. With the interval algorithm, the expressions of the interval stiffness matrix, damping matrix and mass matrices are developed. Based on the matrix perturbation theory and interval extension of function, the upper and lower bounds of dynamic response are obtained, while the sharp bounds are guaranteed by the interval operations. A numerical example, dynamic response analysis of a box cantilever beam, is given to illustrate the validity of the present method.