• Title/Summary/Keyword: uplift behavior

Search Result 103, Processing Time 0.026 seconds

A Study on the Long-Term Behavior Characteristics of Buoyancy-Resistant Permanent Anchor (부력저항 영구앵커의 장기거동 특성에 관한 연구)

  • Huh, Byungjoo;Kim, Chanki;Jung, Yonggun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.12
    • /
    • pp.27-35
    • /
    • 2010
  • The structures built under the groundwater level are affected by the buoyancy force, which is hydrostatic pressure in the up direction. Recently, buoyancy-resistant anchor method has been applied in many cases of the construction of the important structure of large size, which is built under the groundwater level so that it takes high uplift pressure. Even if the construction cost of the method is very high, it surely increases the safety rate. However, the diagnosis of the performance of the buoyancy-resistant permanent anchor and the investigation of resistance mechanism are still insufficient. Especially, the long-term behavior of the anchor has not been studied well due to the difficulty in observation procedure. The contribution of this paper is the establishment of reasonable design methodology. We have measured anchor axial forces for 10 years after the construction, by using an automated measurement and a manual measurement by establishing a load cell in anchor head. Through the data collected from the measurements, we analyze the construction-step behavior of the anchor according to the self-weight variation of the building and the long-term behavior (i.e. movement within 10 years after the construction) of the anchor according to the passage of time.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

Seismic response evaluation of concentrically rocking zipper braced frames

  • Sarand, Nasim Irani;Jalali, Abdolrahim
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.303-317
    • /
    • 2020
  • In this study an innovative rocking zipper braced frame (RZBF) is proposed to overcome the deficiencies of common concentrically braced frames. RZBF is an improved rocking concentrically braced frame which is based on combination of rocking behavior and zipper columns. The base rocking joints and post-tensioned bars provide rocking response and restoring force, respectively. Also, zipper columns distribute the unbalance force over the frame height and reduce the damage concentration. To evaluate seismic performance of RZBF, a comparison study is carried out considering concentrically braced frame, zipper braced frame, rocking concentrically braced frame and RZBF. Thereby, a suite of non-linear time history analyses had been performed on four different types of archetypes with four, six, eight, ten and twelve stories. Frames were designed and non-linear time history analyses were conducted in OpenSees. To compare the seismic behavior of the archetypes, roof drifts, residual roof drifts, story drifts, the forces of first and top story braces, PT bars forces, column uplift and base shears were taken in to consideration. Results illustrate that using RZBF, can reduce the damage due to reduced residual drifts. Zipper columns enhance the seismic performance of rocking systems. As the number of stories increase in the RZBF systems, larger top story braces were needed. So the RZBF system is applicable on low and midrise buildings.

An Experimental Study on the Behavior of Miscopiles installed in Weathered Weak Rock (풍화암 지반에 설치된 소구경말뚝의 거동에 관한 연구)

  • 박성재;정경환;이세훈
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.389-396
    • /
    • 1999
  • In this study compressive and tensile load tests have been performed to investigate reinforcing effect and load transfer mechanism of small diameter piles installed in the foundation soil for the marine suspension bridge. Load tests were carried out on steel plate with diameters of 50cm, 100cm and 150cm varying loads starting from 39 tons up to 314 tons. Small diameter piles were proved to behavior like as friction piles and loads were not transmitted to the bottom of piles. From pull-out tests, the uplift capacity of small diameter piles was largely influenced by reinforcing materials compared to frictional resistance between piles and adjacent soils. The bearing capacity of small diameter piles appeared to be higher than the ultimate bearing capacity evaluated using static formulae. The load carrying capacity of small diameter piles was superior to the bored piles with a similar size. Thus, ultimate bearing capacity estimated from static formulae can provide conservative designs and thereby resulting in economic disadvantages. A further study to accumulate data regarding various soil conditions is recommended for an improved estimation of bearing capacity of piles with small diameter.

  • PDF

Effects of Vehicle Loads on Thermal Buckling Behavior of Continuous Welded Rail Tracks (장대레일 궤도의 온도좌굴 거동에 미치는 열차하중의 영향)

  • Choi, Dong Ho;Kim, Ho Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.727-736
    • /
    • 2000
  • The present study investigates the influences of vehicle induced loads on the thermal buckling behavior of straight and curved continuous welded rail (CWR) tracks. Quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deflection induced by wheel loads of vehicle. The lateral loads of vehicle induced by weight, the speed, the superelevation and curvature of track, and other dynamic vehicle track interaction, are included in the ratio of lateral to vertical vehicle load. Parametric numerical analyses are perfomed to calculate the upper and lower critical buckling temperatures of CWR tracks, and the comparison between the results of this work and the previous results without vehicle is also included.

  • PDF

Experimental Study on the Buckling Behavior of L-Shaped Header System (L-헤더 시스템의 좌굴 거동에 관한 실험 연구)

  • Park, Wan Soon;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.665-674
    • /
    • 2002
  • The back-to-back and box-shaped headers used in light gauge steel structures have some disadvantages, i.e., construction efficiency and cost competitiveness. As such, cold-formed steel L-shaped headers have been developed and are used actively in advanced nations. However, this system has not been used in Korea because of inadequate investigation and adaptation efforts and lack of application example. Thus, this research evaluated the structural performance of L-header using buckling analyses and bending tests. Test results were compared using the AISI design criteria. Test results showed that local buckling and distortional buckling governed buckling behavior in gravity loads and uplift loads, respectively. These results were consistent with the calculated nomial strengths using the AISI design criteria.

Stability of onshore pipelines in liquefied soils: Overview of computational methods

  • Castiglia, Massimina;de Magistris, Filippo Santucci;Napolitano, Agostino
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.355-366
    • /
    • 2018
  • One of the significant problems in the design of onshore pipelines in seismic areas is their stability in case of liquefaction. Several model tests and numerical analyses allow investigating the behavior of pipelines when the phenomenon of liquefaction occurs. While experimental tests contribute significantly toward understanding the liquefaction mechanism, they are costly to perform compared to numerical analyses; on the other hand, numerical analyses are difficult to execute, because of the complexity of the soil behavior in case of liquefaction. This paper reports an overview of the existing computational methods to evaluate the stability of onshore pipelines in liquefied soils, with particular attention to the development of excess pore water pressures and the floatation of buried structures. The review includes the illustration of the mechanism of floating and the description of the available calculation methods that are classified in static and dynamic approaches. We also highlighted recent trends in numerical analyses. Moreover, for the static condition, referring to the American Petroleum Institute (API) Specification, we computed and compared the uplift safety factors in different cases that might have a relevant practical use.

Finite element modeling for structure-soil interaction analysis of plastic greenhouse foundation (온실기초의 구조물-지반 상호작용 해석을 위한 유한요소 모델링)

  • Ryu, Hee-Ryong;Cho, Myeong-Whan;Yu, In-Ho;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • In this study, structural behavior of plastic greenhouse foundation was investigated using rational finite element modeling for structures which have different material properties each other. Because the concrete foundation of plastic greenhouse and soil which surround and support the concrete foundation have very different material property, the boundary between two structures were modeled by a interface element. The interface element was able to represent sliding, separation, uplift and re-bonding of the boundary between concrete foundation and soil. The results of static and dynamic analysis showed that horizontal and vertical displacement of concrete foundation displayed a decreasing tendency with increasing depth of foundation. The second frequency from modal analysis of structure including foundation and soil was estimate to closely related with wind load.

Preliminary Study on the Behavior of Rock Anchors Subjected to Repeated Loadings (반복하중을 받는 락앵커의 거동에 대한 기초적 연구)

  • 원상연;조남준;황성일
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.25-34
    • /
    • 2001
  • 송전철탑의 기초로써 락앵커는 바람에 의해 반복적인 하중을 받고 있다. 반복하중은 락앵커의 인발 지지력 감소와 누적변위의 증가를 유발할 수 있다. 그러므로 송전철탑의 락앵커 설계시 세심한 주의가 요구된다. 본 논문에서는 세 가지 암반형태에 시공된 모형 락앵커에 대하여 반복하중 시험을 수행한 결과들을 제시하였다. 시험결과에 의하면 정적 극한하중의 50%보다 작은 최대 반복하중(Q$_{max}$)이 락앵커에 작용할 경우, 락앵커의 지지력에 대하여 반복하중의 영향이 없다. 최대 반복하중이 정적 극한하중의 50%에서 75%로 작용할 경우 누적변위의 증가를 유발하고, 정적 극한하중의 75%이상인 경우 락앵커의 지지력에 심각한 영향을 미친다. 따라서 정적 극한하중의 50% 이상의 반복하중을 받는 락앵커는 불안정하다.

  • PDF

Variable Suspension Design for Active Pantograph

  • Shin, Seungkwon;Kim, Hyungchul;Jung, Hosung;Park, Jongyoung;Kim, Sangahm
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.105-108
    • /
    • 2015
  • There are a lot of traffic jams in the metropolitan area and the commuting time has been longer nowadays. So the urban people has been interested in the GTX(Great Train Express) project in Korea. The GTX is the train which runs at 200km/h speed in underground tunnels. If the train also operates at high speed in tunnel section, the pressure wave will happen and the uplift force of pantograph may vary abruptly. If the rigid trolley bar system is used in tunnel section, it is difficult to improve the commercial speed of train. In order to improve the train speed in tunnel section, this paper presents the new pantograph concepts which can change the suspension stiffness and deals with the dynamic behavior characteristics of pantograph according to the parameter variation.