• Title/Summary/Keyword: upland field

Search Result 513, Processing Time 0.032 seconds

Reduction of Carbon Dioxide and Nitrous Oxide Emissions through Various Biochars Application in the Upland (밭 토양에서 다양한 바이오차 시용에 따른 이산화탄소 및 아산화질소 감축효과)

  • Lee, Sun-Il;Kim, Gun-Yeob;Choi, Eun-Jung;Lee, Jong-Sik;Jung, Hyun-Cheol
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.11-18
    • /
    • 2018
  • Biochar is a carbon-rich solid product obtained by the pyrolysis of biomass. It has been suggested to mitigate climate change through increased carbon storage and reduction of greenhouse gas emission. The objective of this study was to evaluate carbon dioxide ($CO_2$) and nitrous oxide ($N_2O$) emissions from soil after various biochars addition. The biochars were produced by pyrolysing pear branch, rice hull and bean straw at $400{\sim}500^{\circ}C$. The treatments were consisted of a control without input of biochar and three type biochars input as 5.0 Mg/ha. Emissions of $CO_2$ and $N_2O$ from upland soil were determined using closed chamber for 8 weeks at $25^{\circ}C$ of incubation temperature. It was shown that the cumulative $CO_2$ were 207.1 to $255.2g\;CO_2/m^2$ for biochar input treatments and $258.6g\;CO_2/m^2$ for the control after experimental periods. The cumulative $CO_2$ emission was slightly decreased in biochar input treatment compared to the control. It was appeared that cumulative $N_2O$ emissions were $2,890.6mg\;N_2O/m^2$ for control, 379.7 to $525.2mg\;N_2O/m^2$ for biochar input treatment at the end of experiment. All biochar treatments were found to significantly reduce $N_2O$ emission by 82~87%. Consequently the biochar from byproducts such as pear branch, rice hull and bean straw could suppress the soil $N_2O$ emission. The results from the study imply that biochar can be utilized to reduce greenhouse gas emission from the upland field.

Change of Nutrition Loss of Long-term Application with Different Organic Material Sources in Upland Soil (유기물원이 다른 퇴비연용 밭토양에서 양분유실량 변화)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Kim, Jae-Duk;Han, Sang-Su;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.432-445
    • /
    • 2000
  • The objective of this study was to determine the effects of various kinds of composts on the change of nutrition loss in upland soils. Field experiments were conducted in the loam and sandy loam soils, while the clay loam and sandy loam soils were used for laboratory experiments. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The loss of nutrients in the form of cation and anion by run-off water increased with the increase of compost application rate. Compared with bare soils, maize cultivation decreased the nutrient loss by run-off from soils by 43% in anionic form and 32% in cationic form. Amount of cation loss were ordered $K^+$ > $Ca^{2+}$ > $Na^+$ > $Mg^{2+}$ > $NH_4{^+} $ and that of anion loss were ordered $SO_4{^{2-}}$ > $NO_3{^-}$ > $Cl^-$ > $PO_4{^{3-}}$. Nutrient loss of sand loam soil in the cation and anion by percolation water increased 1.7 times compared with loam soil. $NO_3{^-}-N$ contents in percolated water were high at the initial stage after compost application, and the amounts were higher in sandy loam soil than loam soil. The maize cultivation also decreased the $NO_3{^-}-N$ contents in percolated water by 82% in loam soil, and 58% in sand loam soil. Soil pH of composts determined by laboratory incubation test increased pH 6.1~6.8 application with poultry and cow manure compost but application with human excrement sludge decreased pH 4.5~4.7. Soil EC were increased initially composts application and decreased up to 2 weeks, thereafter kept a certain level. Nitrogen mineralization rates of composts determined by laboratory incubation test at $25^{\circ}C$ were 39~76% in sandy loam soil, and 16~48% in clay loam soil.

  • PDF

Effects of Alternative Crops Cultivation on Soil Physico-chemical Characteristics and Crop Yield in Paddy Fields (논에서 벼 대체작물 재배가 토양 물리화학성과 작물 수량에 미치는 효과)

  • Han, Kyunghwa;Cho, Hyunjun;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Seo, Mijin;Jung, Kangho;Zhang, Yongseon;Seo, Youngho
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.67-72
    • /
    • 2017
  • BACKGROUND:Cultivation of alternative crops in paddy fields is necessary because of the decrease in rice consumption and the increase in excess stock of rice. The study was conducted to investigate the effects of alternative crops cultivation in paddy fields on soil physico-chemical characteristics and crop yield. METHODS AND RESULTS: Soybean (Glycine max), red-clover (Trifolium pratense), and water convolvulus (Ipomoea aquatica) were selected for alternative crops in the first and/or second year and rice was planted in the third year. When alternative crops were cultivated in the previous year, soil bulk density, soil hardness, and water content were lower than those for rice cultivation. Water-depth decreasing rate and aggregate content were greater for the upland-upland-paddy cropping system than upland-paddy-paddy cropping system. Cultivation of red-clover and water convolvulus for two years resulted in the high soil organic matter content. In the third year, available phosphate, exchangeable potassium, and soil cation exchange capacity were relatively high when soybean was cultivated in the previous year. In the first year, water convolvulus cultivation showed greater productivity than red-clover cultivation while the opposite pattern was found in the second year. Rice yield in the third year was greater for soybean or red-clover as a previous crop than for water convolvulus as a previous crop. CONCLUSION: The results suggest that cultivation of alternative crops in paddy fields can improve soil physical properties including bulk density, hardness, water content, and aggregate content as well as rice productivity.

'Hi-early', Early Heading and Harvestable Winter Forage Oats Cultivar (수확이 빠른 조숙성 조사료용 월동귀리 '하이어리')

  • Park, Tae-Il;Kim, Yang-Kil;Park, Hyung-Ho;Oh, Young-Jin;Park, Jong-Chul;Kang, Chon-Sik;Park, Jong-Ho;Cheong, Young-Geun;Kim, Kyong-Ho;Choi, Kyu-Hwan;Hong, Ki-Heung;Chae, Hyun-Seok;Ku, Ja-Hwan;Ahn, Jong-Woong;Han, Ouk-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.1
    • /
    • pp.16-22
    • /
    • 2018
  • Oats (Avena sativa L.), which are known as one of the forage crops of Korea, have good livestock palatability and are popular to cattle farmers because of their high dry matter. However, the cultivation of double cropping in the rice field was reluctant due to the late maturing for farmers to plant rice continuously. 'Hi-early', a winter oats for forage use, was developed by the breeding team at National Institute of Crop Science, RDA in 2016. It was derived from a cross between '517A2-121'(IT133383) and 'CI7604' (IT133379). Subsequent generations followed by the cross were handled in bulk and pedigree selection programs at Suwon, Iksan and Jeonju, respectively. After preliminary and advance yield test for 2 years, 'SO2004015-B-B-23-1-3-7', designated as a line name of 'Gwiri92', were subsequently evaluated for earliness and forage yield during 3 years in four parts such as Jeju (upland), Yesan (upland), Iksan (upland), and Jeonju (paddy), from 2014 to 2016, and finally named as 'Hi-early'. Cultivar 'Hi-early' has the characteristics of medium leaves of green color, thick diameter culm, and medium grain of brown color. Over 3 years, the heading date of 'Hi-early' was about 9 days earlier than that of check cultivar 'Samhan' (April 26 and May 5, respectively). Average forage fresh yield of 'Hi-early' harvested at milk-ripe stage was similar to check cultivar ($40.2tone\;ha^{-1}$ and 40.0 tone ha-1, respectively), and dry matter yield also was similar to check cultivar (14.2 tone ha-1 and $14.0tone\;ha^{-1}$, respectively). Cultivar 'Hi-early' was lower than the check cultivar 'Samhan' in terms of the protein content (6.2% and 7.0%, respectively) and total digestible nutrients (61.0%, and 62.5%, respectively), while the TDN yield was more than the check ($7.91tone\;ha^{-1}$ and $7.64tone\;ha^{-1}$, respectively). Fall sowing cropping of 'Hi-early' is recommended only in areas where average daily minimum mean temperatures in January are higher than $-6^{\circ}C$, and it should not be cultivated in mountain areas, where frost damage is likely to occur.

Assessment of Green House Gases Emissions using Global Warming Potential in Upland Soil during Pepper Cultivation (고추재배에서 지구온난화잠재력 (Global Warming Potential)을 고려한 토성별 온실가스 발생량 종합평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.886-891
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment have increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which caus an increase of temperature in Earth. Greenhouse gas emissions such as carbon dioxide ($CO_2$), methane ($CH_4$) and nitrous oxide ($N_2O$) in the Upland field need to be assessed. GHGs fluxes using chamber systems in two upland fields having different soil textures during pepper cultivation (2005) were monitored under different soil textures at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city, Korea. $CO_2$ emissions were 12.9 tonne $CO_2\;ha^{-1}$ in clay loam soil and 7.6 tonne $CO_2\;ha^{-1}$ in sandy loam soil. $N_2O$ emissions were 35.7 kg $N_2O\;ha^{-1}$ in clay loam soil and 9.2 kg $N_2O\;ha^{-1}$ in sandy loam soil. $CH_4$ emissions were 0.054 kg $CH_4\;ha^{-1}$ in clay loam soil and 0.013 kg $CH_4\;ha^{-1}$ in sandy loam soil. Total emission of GHGs ($CO_2$, $N_2O$, and $CH_4$) during pepper cultivation was converted by Global Warming Potential (GWP). GWP in clay loam soil was higher with 24.0 tonne $CO_2$-eq. $ha^{-1}$ than that in sandy loam soil (10.5 tonne $CO_2$-eq. $ha^{-1}$), which implied more GHGs were emitted in clay loam soil.

A Fluctuation of Soil Microflora in Upland Soil Treated with Metalaxyl, Carbofuran and Simazine (Metalaxyl, Carbofuran, Simazine을 처리한 밭토양에서의 미생물수의 변동)

  • Lee, Wang-Hyu;Kim, Ju-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.220-226
    • /
    • 1998
  • The effects of metalaxyl(granule), carbofuran(granule) and simazine(water soluble powder) on the soil microflora were conducted at field soil between Iksan and Chonju province. Pesticides were divided into 0.5, 1, 1.5 and 2.0 times of normal of field, respectively. The number of fluorescent Pseudomonas was ranged from $10^3$ to $10^6/g$ in both field soil treated with cabofuran. Pseudomonas concentration of Chonju field soil slowly increased and approached the maximum level at 56 day after treatment(DAT). It showed the higher at 14DAT than other DAT in Iksan field soil treated with metalaxyl or simazine, whereas it increased again at 112 DAT in metalaxyl treatment. Cabofuran treatment of both field soil showed maximum Pseudomonas number at 28 DAT compared to that of other treatments. In Chonju field soil, those Pseudomonads of metalaxyl and simazine treatment increased the highest level at 7 DAT. Simazine treatment decreased it's number from the beginning of experiment. In both soil, metalaxyl treatment decrease the general fungi number at 7 DAT, but increase at 14 and 56 DAT in Iksan field soil. However it increased at 56 DAT in Chonju field soil. Cabofuran treatment of Iksan field soil tended to decrease general fungi number at 28 DAT, but was ranged from 1.0 to $8.6{\times}104/g$ for the rest of experimental period. It started to increase at 56 DAT simazine treatment of Iksan. General bacterial concentration both soil treated with cabofuran was belong to $26.6{\sim}29.6{\times}106$. It was the highest at 56 DAT, but was not significantly different. General actinomyces number was highly increased at 7 and 112 DAT compared to that of other DAT. Pseudomonas putida or P. fluorescens from both field soil was separated and identified 10 to 30 of all 104 Pseudomonas, respectively. All isolated microorganisms showed chemical resistance of 100ppm metalaxyl, cabofuran and simazine treatment.

  • PDF

A Study on Transition of Rice Culture Practices During Chosun Dynasty Through Old References IX. Intergrated Discussion on Rice (주요(主要) 고농서(古農書)를 통(通)한 조선시대(朝鮮時代)의 도작기술(稻作技術) 전개(展開) 과정(過程) 연구(硏究) - IX. 도작기술(稻作技術)에 대(對)한 종합고찰(綜合考察))

  • Guh, J.O.;Lee, S.K.;Lee, E.W.;Lee, H.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • From the beginning of the chosun dynasty, an agriculture-first policy was imposed by being written farming books, for instance, Nongsajiksul, matched with real conditions of local agriculture, which provided the grounds of new, intensive farming technologies. This farming book was the collection of good fanning technologies that were experienced in rural farm areas at that time. According to Nongsajiksul, rice culture systems were divided into "Musarmi"(Water-Seeded rice), /"Kunsarmi"(dry-seeded rice), /transplanted rice and mountainous rice (upland rice) culture. The characteristics of these rice cultures with high technologies were based of scientific weeding methods, improved fertilization, and cultivation works using cattle power and manpower tools systematically. Reclamation of coastal swampy and barren land was possible in virtue of fire cultivation farming(火耕) and a weeding tool called "Yoonmok"(輪木). Also, there was an improved hoe to do weeding works as well as thinning and heaping-up of soil at seeding stages of rice. Direct-seeded rice culture in flat paddy fields were expanded by constructing the irrigation reservoirs and ponds, and the valley paddy fields was reclaimed by constructing "Boh(洑)". These were possible due to weed control by irrigation waters, keeping soil fertility by inorganic fertilization during irrigation, and increased productivity of rice fields by supplying good physiological conditions for rice. Also, labor-saving culture of rice was feasible by transplanting but in national-wide, rice should not basically be transplanted because of the restriction of water use. Thus, direct-seeded rice in dry soils was established, in which rice was direct-seeded and grown in dry soils by seedling stages and was grown in flooded fields when rained, as in the book "Nongsajiksul". During the middle of the dynasty(AD 1495-1725), the excellent labor-saving farmings include check-rowing transplanting because of weeding efficiency and availability in rice("Hanjongrok"), and, nurserybed techniques (early transplanting of rice) were emphasized on the basis of rice transplanting ["Nongajibsung"]. The techniques for deep plowing with cattle powers and for putting more fertilizers were to improve the productivity of labor and land, The matters advanced in "Sanlimkyungje" more than in "Nongajibsung" were, development of "drybed of rice nursery stock", like "upland rice nursery" today, transplanting, establishment of "winter barly on drained paddy field, and improvement of labor and land-productivity in rice". This resulted in the community of large-scale farming by changing the pattern of small-farming into the production system of rice management. Woo-hayoung(1741-1812) in his book "Chonilrok" tried to reform from large-scale farmings into intensive farmings, of which as eminent view was to divide the land use into transplanting (paddy) and groove-seeding methods(dry field). Especially as insisted by Seo-yugo ("Sanlimkyungjeji"), the advantages of transplanting were curtailment of weeding labors, good growth of rice because of soil fertility of both nurserybed and paddy field, and newly active growth because rice plants were pulled out and replanted. Of course, there were reestimation of transplanting, limitation of two croppings a year, restriction of "paddy-upland alternation", and a ban for large-scale farming. At that period, Lee-jiyum had written on rice farming technologies in dry upland with consider of the land, water physiology of rice, and convenience for weeding, and it was a creative cropping system to secure the farm income most safely. As a integrated considerations, the followings must be introduced to practice the improved farming methods ; namely, improvement of farming tools, putting more fertilizers, introduction of cultural technologies more rational and efficient, management of labor power, improvement of cropping system to enhance use of irrigation water and land, introduction of new crops and new varieties.

  • PDF

Evaluation of Insecticidal Activity of Pesticides Against Hemipteran Pests on Apple Orchard (사과과수원의 노린재류에 대한 농약의 생물활성 평가)

  • Lee, Sun-Young;Yoon, Changmann;Do, Yun-Su;Lee, Dong-Hyuk;Lee, Jung-Sup;Choi, Kyung-Hee
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.264-271
    • /
    • 2015
  • Stink bugs do damage on various crops including upland crops and tree fruits. Especially, yellow-brown stink bug (Halyomorpha halys ($St{\aa}l$)) and brown-winged green (Plautia stali) are severely damaged on apple orchard. Using seven insecticides - dinotefuran WP, etofenprox WP, chlorpyrifos WP, cabaryl WP, chlothianidin SC, flonicamid WG, and bifenthrin WG - registered on apple, contact and residual toxicities were tested on both male and female of P. stali and H. halys that preferred apple fruit. Contact toxicity of dinotefuran WP was excellent on male P. stali 48 hours after treatment (HAT) with 96.7% and significant on male Halyomorpha halys 48 HAT with 74.5% but the others had low effect. Contact toxicity on these stink bugs were higher in male than female. All insecticides except flonicamid, residual effects were all effective on both male and female of P. stali, while chlorpyrifos and bifenthrin were showed higher residual toxicity on both male and female of H. halys in laboratory condition. Two insecticides, chlorpyrifos and bifenthrin, were selected for the field test. Bifenthrin have a high residual effect on P. stali until 5 days after treatment, but have a low residual toxicity on H. halys in the field test. Chlorpyrifos showed higher residual toxicity in the laboratory, however, showed low residual efficacy on two species stink bug onto the field.

Development under Constant Temperatures and Seasonal Prevalence in Soybean Field of the Bean Pyralid, Omiodes indicatus (Lepidoptera: Crambidae) (세줄콩들명나방 Omiodes indicatus (포충나방과)의 온도별 발육과 콩에서의 발생소장)

  • Choi, Kyu-Hwan;Hong, Yoon-Ki;Chang, Young-Jik;Moon, Jeong-Seop;Kim, Chi-Sun;Choi, Dong-Chil;Kim, Tae-Heung
    • Korean journal of applied entomology
    • /
    • v.47 no.4
    • /
    • pp.353-358
    • /
    • 2008
  • The bean pyralid, Omiodes indicatus (Fabricius), moulted 4 times during larval period. When temperature increased from 15 to 20, 25, and $30^{\circ}C$, the developmental period of immature stages was shortened; 18.2, 7.5, 5.0, and 4.1 days of egg period; 51.8, 20.0, 12.7, and 9.9 days of larval period; 29.5, 12.0, 8.0, and 5.9 days of pupal period, respectively. Adult longevity was 16.0, 14.7, 11.2, and 7.5 days at respective temperatures. A female adult layed 57.0, 63.3, 82.2, and 31.7 eggs in 3.7, 6.0, 5.8, and 3.0 days of oviposition period at the same temperature regimes, respectively. Field survey in 2006 and 2007 showed that leaf damage on paddy field and upland soybeans began to appear in mid July, reaching its peaks in mid August and late September. Adults of the bean pyralid appeared in mid July and peaked in late August and early October.

Analysis of Soil Erosion Reduction Ratio with Changes in Soil Reconditioning Amount for Highland Agricultural Crops (고랭지 농업의 작물별 객토량 변화에 따른 토양유실 저감 분석)

  • Heo, Sunggu;Jun, ManSig;Park, Sanghun;Kim, Ki-sung;Kang, SungKeun;Ok, YongSik;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.185-194
    • /
    • 2008
  • There is increased soil erosion potential at highland agricultural crop fields because of its topographic characteristics and site-specific agricultural management practices performed at these areas. The agricultural upland fields are usually located at the sloping areas, resulting in higher soil loss, pesticides, and nutrients in case of torrential rainfall events or typhoon, such as 2002 Rusa and 2003 MaeMi. At the highland agricultural fields, the soil reconditioning have been performed every year to decrease damage by continuous cropping and pests. Also it has been done to increase crop productivity and soil fertility. The increased amounts of soil used for soil reconditioning are increasing over the years, causing significant impacts on water quality at the receiving water bodies. In this study, the field investigation was done to check soil reconditioning status for potato, carrot, and cabbage at the Doam-dam watershed. With these data obtained from the field investigation, the Soil and Water Assesment Tool (SWAT) model was used to simulate the soil loss reduction with environment-friendly and agronomically enough soil reconditioning. The average soil reconditioning depth for potato was 34.3 cm, 48.3 cm for carrot, and 31.2 cm for cabbage at the Doam-dam watershed. These data were used for SWAT model runs. Before the SWAT simulation, the SWAT ArcView GIS Patch, developed by the Kangwon National University, was applied because of proper simulation of soil erosion and sediment yield at the sloping watershed, such as the Doam-dam watershed. With this patch applied, the Coefficient of Determination ($R^2$) value was 0.85 and the Nash-Sutcliffe Model Efficiency (EI) was 0.75 for flow calibration. The $R^2$ value was 0.87 and the EI was 0.85 for flow validation. For sediment simulation, the $R^2$ value was 0.91 and the EI was 0.70, indicating the SWAT model predicts the soil erosion processes and sediment yield at the Doam-dam watershed. With the calibrated and validated SWAT for the Doam-dam watershed, the soil erosion reduction was investigated for potato, carrot, and cabbage. For potato, around 19.3 cm of soil were over applied to the agricultural field, causing 146% of more soil erosion rate, approximately 33.3 cm, causing 146% of more soil erosion for carrot, and approximately 16.2 cm, causing 44% of more soil erosion. The results obtained in this study showed that excessive soil reconditioning are performed at the highland agricultural fields, causing severe muddy water issues and water quality degradation at the Doam-water watershed. The results can be used to develop soil reconditioning standard policy for various crops at the highland agricultural fields, without causing problems agronomically and environmentally.