• Title/Summary/Keyword: up-regulated

Search Result 1,471, Processing Time 0.061 seconds

Changes of superoxide dismutase and glutathione peroxidase in light damaged rat retina

  • Kaidzu, Sachiko;Tanito, Masaki;Takanashi, Taiji;Ohira, Akihiro
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.430-432
    • /
    • 2002
  • The changes in expression of copper-zinc superoxide dismutase (CuZn-SOD), manganese superoxide dismutase (Mn-SOD) and glutathione peroxidase (GPX) in light-damaged rat retinas were examined. Sprague-Dawley rats (male, 6-weeks-old) were maintained on a cyclic photoperiod (12 hours light and 12 hours darkness) for 2 weeks. The illumination intensity during the light period was 80 lux. To induce light damage to the retina, a high-intensity illumination (3000-lux) was applied to the animals for 24 hours. After light exposure, the animals were returned to cyclic lighting. Eyes were enucleated 12 and 24 hours after light exposure started or 1,3, and 7 days after light exposure ended. Eyes were fixed and embedded in paraffin wax. Tissues were cut into 4${\mu}{\textrm}{m}$-thick sections. Sections were immunostained using antibody against CuZn-SOD, Mn-SOD, GPX and 8-hydroxy-deoxyguanocine (8-OHdG) as oxidative stress marker. 8-OHdG was observed in the outer nuclear layer (ONL) and retinal pigment epithelium (RPE) during light exposure. In light-damaged retinas CuZn-SOD labeling was up regulated in the ONL and RPE. Mn-SOD labeling was up regulated in rod inner segments (RIS) during light exposure and that in the RPE was up regulated after exposure. GPX labeling was observed in rod outer segments (ROS) during light exposure. GPX labeling was also observed in the RPE during and after light exposure. All three enzymes were observed in the outer retina, which suffered light damage, but occurred in defferent layers except within the RPE, in which case all three were expressed. These enzymes may play complementary roles as protective factors in light-damaged retinas.

  • PDF

Inhibitory Effect of Ginseng on Breast Cancer Cell Line Growth Via Up-Regulation of Cyclin Dependent Kinase Inhibitor, p21 and p53

  • Shabanah, Othman A AL;Alotaibi, Moureq R;Rejaie, Salim S Al;Alhoshani, Ali R;Almutairi, Mashal M;Alshammari, Musaad A;Hafez, Mohamed M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.11
    • /
    • pp.4965-4971
    • /
    • 2016
  • Objective: Breast cancer is global female health problem worldwide. Most of the currently used agents for breast cancer treatment have toxic side-effects. Ginseng root, an oriental medicine, has many health benefits and may exhibit direct anti-cancer properties. This study was performed to assess the effects of ginseng on breast cancer cell lines. Materials and Methods: Cytotoxicity of ginseng extract was measured by MTT assay after exposure of MDA-MB-231, MCF-10A and MCF-7 breast cancer cells to concentrations of 0.25, 0.5, 1, 1.5, 2 and 2.5 mg/well. Expression levels of p21WAF, p16INK4A, Bcl-2, Bax and P53 genes were analyzed by quantitative real time PCR. Results: The treatment resulted in inhibition of cell proliferation in a dose-and time-dependent manner. p53, p21WAF1and p16INK4A expression levels were up-regulated in ginseng treated MDA-MB-231 and MCF-7 cancer cells compared to untreated controls and in MCF-10A cells. The expression levels of Bcl2 in the MDA-MB-231 and MCF-7 cells were down-regulated. In contrast, that of Bax was significantly up-regulated. Conclusion: The results of this study revealed that ginseng may inhibit breast cancer cell growth by activation of the apoptotic pathway.

Cells Transformed by PLC-Gamma 1 Overexpression are Highly Sensitive to Clostridium difficile Toxin A-Induced Apoptosis and Mitotic Inhibition

  • Nam, Hyo-Jung;Kang, Jin-Ku;Chang, Jong-Soo;Lee, Min-Soo;Nam, Seung-Taek;Jung, Hyun-Woo;Kim, Sung-Kuk;Ha, Eun-Mi;Seok, Heon;Son, Seung-Woo;Park, Young-Joo;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.50-57
    • /
    • 2012
  • Phospholipase C-${\gamma}l$ (PLC-${\gamma}l$) expression is associated with cellular transformation. Notably, PLC-${\gamma}$ is up-regulated in colorectal cancer tissue and breast carcinoma. Because exotoxins released by Clostridium botulinum have been shown to induce apoptosis and promote growth arrest in various cancer cell lines, we examined here the potential of Clostridium difficile toxin A to selectively induce apoptosis in cells transformed by PLC-${\gamma}l$ overexpression. We found that PLC-${\gamma}l$-transformed cells, but not vector-transformed (control) cells, were highly sensitive to C. difficile toxin A-induced apoptosis and mitotic inhibition. Moreover, expression of the proapoptotic Bcl2 family member, Bim, and activation of caspase-3 were significantly up-regulated by toxin A in PLC-${\gamma}l$-transformed cells. Toxin A-induced cell rounding and paxillin dephosphorylation were also significantly higher in PLC-${\gamma}l$-transformed cells than in control cells. These findings suggest that C. difficile toxin A may have potential as an anticancer agent against colorectal cancers and breast carcinomas in which PLC-${\gamma}l$ is highly up-regulated.

Identification of Candidate Transcripts Related to Drought Stress using Secondary Traits and qRT-PCR in Tropical Maize (Zea mays L.)

  • Kim, Hyo Chul;Song, Kitae;Moon, Jun-Cheol;Kim, Jae Yoon;Kim, Kyung-Hee;Lee, Byung-Moo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.4
    • /
    • pp.432-440
    • /
    • 2019
  • Global climate change exerts adverse effects on maize production. Among abiotic stresses, drought stress during the tasseling stage (VT) can increase anthesis-silking intervals (ASI) and decrease yield. We performed an evaluation of ASI and yield using a drought-sensitive line (Ki3) and a drought-tolerant line (Ki11) to analyze the correlation with ASI and yield. Moreover, the de novo data of Ki11 were analyzed to find putative novel transcripts related todrought stress in tropical maize. A total of 182 transcripts, with a log2 ratio >1.5, were found by comparing drought conditions to a control. The top 40 transcripts of high expression levels in the de novo analysis were selected and analyzed with PCR. Of the 40 transcripts, six novel transcripts were detected by quantitative real-time PCR (qRT-PCR) using seedling and VT stage samples. Five transcripts (transcripts_1, 12, 34, 35, and 40) were up-regulated in the Ki11 shoot at seedling stage, and transcripts_1, 12, and 40 were up-regulated at the re-watering stage after 12 h of drought stress. The transcripts_32 and 34 were up-regulated at the VT stage. Hence, transcript_34 possibly plays a significant role in drought tolerance during the seedling and VT stages. The transcript_32 was identified as chloramphenicol acetyltransferase (CAT) by Pfam domain analysis. The function of the other transcripts remained unknown. Further characterization of these novel transcripts in genetic regulation will be of great value for the improvement of maize production.

Identification and Transcriptional Analysis of Priming Genes in Arabidopsis thaliana Induced by Root Colonization with Pseudomonas chlororaphis O6

  • Cho, Song-Mi;Park, Ju-Yeon;Han, Song-Hee;Anderson, Anne J.;Yang, Kwang-Yeol;Gardener, Brian Mcspadden;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.27 no.3
    • /
    • pp.272-279
    • /
    • 2011
  • Root colonization of Arabidopsis thaliana with Pseudomonas chlororaphis O6 induces systemic tolerance against diverse pathogens, as well as drought and salt stresses. In this study, we demonstrated that 11 genes in the leaves were up-regulated, and 5 genes were down-regulated as the result of three- to five-days root colonization by P. chlororaphis O6. The identified priming genes were involved in cell signaling, transcription, protein synthesis, and degradation. In addition, expression of selected priming genes were induced in P. chlororaphis O6-colonized plants subjected to water withholding. Genes encoding defense proteins in signaling pathways regulated by jasmonic acid and ethylene, such as VSP1 and PDF1.2, were additional genes with enhanced expression in the P. chlororaphis O6-colonized plants. This study indicated that the expression of priming genes, as well as genes involved in jasmonic acid- and ethylene-regulated genes may play an important role in the systemic induction of both abiotic and biotic stress due to root colonization by P. chlororaphis O6.

Differential Expression of TPX2 upon Differentiation of Human Embryonic Stem Cells

  • Noh, Hye-Min;Choi, Seong-Jun;Kim, Se-Hee;Kim, Kye-Seong;Kim, Jin-Kyeoung
    • Reproductive and Developmental Biology
    • /
    • v.31 no.4
    • /
    • pp.221-226
    • /
    • 2007
  • Embryonic stem (ES) cells are known to have an infinite proliferation and pluripotency that are associated with complex processes. The objective of this study was to examine expression of genes differentially regulated during differentiation of human ES cells by suppression subtractive hybridization (SSH). Human ES cells were induced to differentiate into neural precursor cells via embryoid body. Neural precursor cells were isolated physically based on morphological criteria. Immunocytochemical analysis showed expression of pax6 in neural precursor cells, confirming that the isolated cells were neural precursor cells. Undifferentiated human ES cells and neural precursor cells were subject to the SSH. TPX2 (Targeting Protein for Xklp2 (Xenopus centrosomal kinesin-like protein 2)) was identified, cloned and analyzed during differentiation of human ES cells into neural lineages. Expression of TPX2 was gradually down-regulated in embryoid bodies and neural precursor cells relative to undifferentiated ES cells. Targeting Protein for Xklp2 has been shown to be involved in cell division by interaction with microtubule development in cancer cells. Taken together, result of this study suggests that TPX2 may be involved in proliferation and differentiation of human ES cells.

Enhanced Expression of Plasma Glutathione Peroxidase in the Thymus of Mice Treated with TCDD and Its Implication for TCDD-induced Thymic Atrophy

  • Cho, Hyun-Jin;Hahn, Eun-Jin;Hwang, Ju-Ae;Hong, Min-Sun;Kim, Sook-Kyung;Pak, Hye-Ryun;Park, Joo-Hung
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.276-283
    • /
    • 2006
  • The potent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), induces thymus atrophy in experimental animals. However, its mechanism of action is not fully understood. To gain insight into its immunosuppressive effect, Balb/c mice were intraperitoneally injected with TCDD ($30{\mu}g/kg$ body weight) and genes regulated by TCDD were identified using cDNA arrays [Park and Lee (2002)]. One of the regulated genes was that for plasma glutathione peroxidase (pGPx). Upon TCDD injection, pGPx mRNA levels in the thymus increased, in parallel with increases in GPx activity and the frequency of anti-human pGPx antibody-reactive cells. pGPX mRNA levels were also moderately up-regulated in the testis and spleen. This is the first report that a particular isotype of the glutathione peroxidase family is regulated by TCDD at both mRNA and protein levels. pGPx is expressed in various tissues in contact with body fluids, and detoxifies hydrogen peroxides and lipid hydroperoxides. It will be of interest to assess the role of pGPx in TCDD-induced thymic atrophy.

Up-regulating of RASD1 and Apoptosis of DU-145 Human Prostate Cancer Cells Induced by Formononetin in Vitro

  • Liu, Xiao-Jia;Li, Yun-Qian;Chen, Qiu-Yue;Xiao, Sheng-Jun;Zeng, Si-En
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.6
    • /
    • pp.2835-2839
    • /
    • 2014
  • Prostate cancer is one of the most prevalent malignant cancers in men. The isoflavone formononetin is a main active component of red clover plants. In the present study, we assessed the effect of formononetin on human prostate cancer DU-145 cells in vitro, and elucidated posssible mechanisms. DU-145 cells were treated with different concentrations of formononetin and cell proliferation was assessed by MTT assay, cell apoptosis by Hoechst 33258 and flow cytometry, and protein levels of RASD1, Bcl-2 and Bax by Western blotting. The results showed that formononetin inhibited the proliferation of DU-145 cells in a dose-dependent manner. DU-145 cells treated with different concentrations of formononetin displayed obvious morphological changes of apoptosis under fluorescence microscopy. In addition, formononetin increased the proportion of early apoptotic DU-145 cells, down-regulated the protein levels of Bcl-2 and up-regulated those of RASD1 and Bax. The level of RASD1 reached its maximum at 48h post-treatment, and rapidly decreased thereafter. Together, we present evidence that formononetin triggered cell apoptosis through the mitochondrial apoptotic pathway by up-regulating RASD1.

Curcumin Inhibits Cell Proliferation of Human Colorectal HCT116 Cells through Up-Regulation of Activating Transcription Factor 3 (ATF3) (ATF3 발현을 통한 curcumin의 대장암 세포 성장 저해)

  • Kim, Hyo-Rim;Son, Jung-Bin;Lim, Seung-Hyun;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.492-498
    • /
    • 2012
  • To investigate whether phytochemicals affect cancer cell viability, human colorectal HCT116 cells were treated with four different phytochemicals. Among these phytochemicals, curcumin is the strongest inhibitor of cell proliferation. In addition, it decreased cell viability in a dose-dependent manner. To unveil the molecular mechanisms involved in the inhibition of cell proliferation by curcumin, we carried out oligo DNA microarray analysis. We found that 137 genes were up-regulated more than 2-fold, and 141 genes were down-regulated more than 2-fold by 25 ${\mu}M$ curcumin treatment. Among the up-regulated genes, we selected 3 genes (ATF-3, GADD45A, and NR4A1) to confirm microarray data. The results of RT-PCR strongly agreed with those of the microarray data. Among the phytochemicals used in this study, curcumin is the strongest inducer of ATF3 expression, and increased ATF3 expression in a dose-dependent manner. Interestingly, FACS analysis showed that the inhibition of cell growth by curcumin was recovered by ATF3-siRNA transfection. Finally, we detected the changes of gene expression by ectopic expression of ATF3. The results indicated that many up-regulated genes were related to apoptosis. Overall, these results suggest that ATF3 may play an important role in the anti-proliferative activity of curcumin in human colorectal cancer cells.