DOI QR코드

DOI QR Code

Curcumin Inhibits Cell Proliferation of Human Colorectal HCT116 Cells through Up-Regulation of Activating Transcription Factor 3 (ATF3)

ATF3 발현을 통한 curcumin의 대장암 세포 성장 저해

  • Kim, Hyo-Rim (Department of Biological Sciences, Andong National University) ;
  • Son, Jung-Bin (Department of Biological Sciences, Andong National University) ;
  • Lim, Seung-Hyun (Department of Biological Sciences, Andong National University) ;
  • Kim, Jong-Sik (Department of Biological Sciences, Andong National University)
  • 김효림 (안동대학교 자연과학대학 생명과학과) ;
  • 손정빈 (안동대학교 자연과학대학 생명과학과) ;
  • 임승현 (안동대학교 자연과학대학 생명과학과) ;
  • 김종식 (안동대학교 자연과학대학 생명과학과)
  • Received : 2011.11.08
  • Accepted : 2012.04.23
  • Published : 2012.04.30

Abstract

To investigate whether phytochemicals affect cancer cell viability, human colorectal HCT116 cells were treated with four different phytochemicals. Among these phytochemicals, curcumin is the strongest inhibitor of cell proliferation. In addition, it decreased cell viability in a dose-dependent manner. To unveil the molecular mechanisms involved in the inhibition of cell proliferation by curcumin, we carried out oligo DNA microarray analysis. We found that 137 genes were up-regulated more than 2-fold, and 141 genes were down-regulated more than 2-fold by 25 ${\mu}M$ curcumin treatment. Among the up-regulated genes, we selected 3 genes (ATF-3, GADD45A, and NR4A1) to confirm microarray data. The results of RT-PCR strongly agreed with those of the microarray data. Among the phytochemicals used in this study, curcumin is the strongest inducer of ATF3 expression, and increased ATF3 expression in a dose-dependent manner. Interestingly, FACS analysis showed that the inhibition of cell growth by curcumin was recovered by ATF3-siRNA transfection. Finally, we detected the changes of gene expression by ectopic expression of ATF3. The results indicated that many up-regulated genes were related to apoptosis. Overall, these results suggest that ATF3 may play an important role in the anti-proliferative activity of curcumin in human colorectal cancer cells.

파이토케미칼이 암 세포 성장에 미치는 영향을 확인하기 위하여, 대장암 세포주 HCT116에 네 종류의 파이토케미칼을 각각 25 ${\mu}M$의 농도로 처리하였다. 처리한 파이토케미칼 중 curcumin이 가장 강력하게 세포 성장을 억제하였다. 또한 curcumin은 농도의존적으로 세포 성장을 억제하였다. Curcumin에 의한 대장암 세포주 성장 저해 활성에 대한 분자생물학적 기전을 연구하기 위하여 oligo DNA microarray 실험을 수행하였다. 그 결과, 25 ${\mu}M$ curcumin 처리에 의해 2배 이상 발현이 증가된 유전자 137개, 발현이 감소된 유전자 141개를 선별하였다. 발현이 증가된 유전자 중, 세포사멸과 밀접한 관련이 있는 것으로 알려진 유전자 3개를 선택하여, RT-PCR을 통해 이들 유전자의 발현이 감소됨을 확인하였다. 처리한 파이토케미칼 중 curcumin은 가장 강력한 ATF3의 유도자였으며, 농도의존적으로 ATF3의 발현을 증가시켰다. 흥미롭게도, curcumin에 의한 성장 저해는 ATF3-siRNA에 의한 ATF3 유전자 발현감소에 의해 성장이 회복되었다. 또한, ATF3 유전자의 과대발현 후 발현이 변화되는 유전자를 선별한 결과, 세포사멸과 관련된 많은 유전자들이 증가됨을 확인하였다. 결론적으로, 대장암 세포주에서 curcumin에 의한 항 성장활성에 있어서 ATF3 유전자가 중요한 역할을 할 것으로 생각된다.

Keywords

References

  1. Chang, L. F., P. C. Lin, L. I. Ho, P. Y. Liu, W. C. Wu, I. P. Chiang, H. W. Chang, S. Z. Lin, Y. C. Harn, H. J. Harn, and T. W. Chiou. 2011. Overexpression of the orphan receptor Nur77 and its translocation induced by PCH4 may inhibit malignant glioma cell growth and induce cell apoptosis. J. Surg. Oncol. 103, 442-450. https://doi.org/10.1002/jso.21809
  2. Das, S. and D. K. Das. 2007. Anti-inflammatory responses of resveratrol. Inflamm. Allergy Drug Targets 6, 168-173. https://doi.org/10.2174/187152807781696464
  3. Hartman, M. G., D. Lu, M. L. Kim, G. J. Kociba, T. Shukri, J. Buteau, X. Wang, W. L. Frankel, D. Guttridge, M. Prentki, S. T. Grey, D. Ron, and T. Hai. 2004. Role for activating transcription factor 3 in stress-induced beta-cell apoptosis. Mol. Cell Biol. 24, 5721-5732. https://doi.org/10.1128/MCB.24.13.5721-5732.2004
  4. Jacob, A., R. Wu, M. Zhou, and P. Wang. 2007. Mechanism of the anti-inflammatory effect of curcumin: PPAR-gamma. PPAR Res. 2007, 1-5.
  5. Jang, M. J., H. E. Kim, S. M. Son, M. J. Kim, E. W. Seo, Y. H. Kim, and J. S. Kim. 2009. Over-expression of NSAID activated gene-1 by caffeic acid phenethyl ester. J. Life Sci. 19, 1787-1793. https://doi.org/10.5352/JLS.2009.19.12.1787
  6. Kaur, S., N. H. Modi, D. Panda, and N. Roy. 2010. Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ--a structural insight to unveil antibacterial activity of curcumin. Eur. J. Med. Chem. 45, 4209-4214. https://doi.org/10.1016/j.ejmech.2010.06.015
  7. Khor, T. O., Y. Huang, T. Y. Wu, L. Shu, J. Lee, and A. N. Kong. 2011. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem. Pharmacol. 82, 1073-1078. https://doi.org/10.1016/j.bcp.2011.07.065
  8. Kim, H. E., M. J. Jang, S. H. Lim, H. R. Kim, S. Y. Kim, G. J. Lee, and J. S. Kim. 2010. Analysis of p53 dependency of differentially expressed genes by capsaicin in human colorectal cancer cell. J. Life Sci. 20, 213-218. https://doi.org/10.5352/JLS.2010.20.2.213
  9. Kolodziejczyk, J., B. Olas, J. Saluk-Juszczak, and B. Wachowicz. 2011. Antioxidative properties of curcumin in the protection of blood platelets against oxidative stress in vitro. Platelets 22, 270-276. https://doi.org/10.3109/09537104.2010.547637
  10. Liao, S., J. Xia, Z. Chen, S. Zhang, A. Ahmad, L. Miele, F. H. Sarkar, and Z. Wang. 2011. Inhibitory effect of curcumin on oral carcinoma CAL-27 cells via suppression of Notch-1 and NF-$\kappa$B signaling pathways. J. Cell Biochem. 112, 1055-1065. https://doi.org/10.1002/jcb.23019
  11. Mudduluru, G., J. N. George-William, S. Muppala, I. A. Asangani, R. Kumarswamy, L. D. Nelson, and H. Allgayer. 2011. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci. Rep. 31, 185-197. https://doi.org/10.1042/BSR20100065
  12. Park, C. E., H. Yun, E. B. Lee, B. I. Min, H. Bae, W. Choe, I. Kang, S. S. Kim, and J. Ha. 2010. The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J. Med. Food 13, 815-820. https://doi.org/10.1089/jmf.2009.1359
  13. Rajamanickam, S. and R. Agarwal. 2008. Natural products and colon cancer: current status and future prospects. Drug Dev. Res. 69, 460-471. https://doi.org/10.1002/ddr.20276
  14. Reuter, S., S. C. Gupta, B. Park, A. Goel, and B. B. Aggarwal. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr. 6, 93-108.
  15. Saha, A., T. Kuzuhara, N. Echigo, A. Fujii, M. Suganuma, and H. Fujiki. 2010. Apoptosis of human lung cancer cells by curcumin mediated through up-regulation of "growth arrest and DNA damage inducible genes 45 and 153. Biol. Pharm. Bull. 33, 1291-1299. https://doi.org/10.1248/bpb.33.1291
  16. Surh, Y. J. 2003. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3, 768-780. https://doi.org/10.1038/nrc1189
  17. Whitlock, N. C., J. H. Bahn, S. H. Lee, T. E. Eling, and S. J. Baek. 2011. Resveratrol-induced apoptosis is mediated by early growth response-1, Kruppel-like factor 4, and activating transcription factor 3. Cancer Prev. Res. 4, 116-127. https://doi.org/10.1158/1940-6207.CAPR-10-0218
  18. Wilken, R., M. S. Veena, M. B. Wang, and E. S. Srivatsan. 2011. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10, 1-19. https://doi.org/10.1186/1476-4598-10-1
  19. Yan, C., M. S. Jamaluddin, B. Aggarwal, J. Myers, and D. D. Boyd. 2005. Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol. Cancer Ther. 4, 233-241. https://doi.org/10.4161/cbt.4.2.1475
  20. Yoshida, A., Y. Pommier, and T. Ueda. 2006. Endonuclease activation and chromosomal DNA fragmentation during apoptosis in leukemia cells. Int. J. Hematol. 84, 31-37. https://doi.org/10.1007/BF03342699
  21. Yu, H., S. M. Kumar, D. Fang, G. Acs, and X. Xu. 2007. Nuclear orphan receptor TR3/Nur77 mediates melanoma cell apoptosis. Cancer Biol. Ther. 6, 405-412. https://doi.org/10.4161/cbt.6.3.3755