• Title/Summary/Keyword: unsupervised model

Search Result 241, Processing Time 0.034 seconds

A Study on the Space Usage by the New Hanok Plan Composition - Focused on the New Hanok in Jeollanam-do Province - (신한옥의 평면구성에 따른 공간활용상태에 관한 연구 - 전라남도 신한옥을 중심으로 -)

  • Park, Jin-A;Kim, Soo-Am
    • Journal of the Korean housing association
    • /
    • v.23 no.4
    • /
    • pp.59-67
    • /
    • 2012
  • Developing the modern design of Hanok and providing support for the commercialization model development in recent years propelled by the New Hanok Support Strategies of the central government in conjunction with the New Hanok revitalization related projects reflecting local goverments. New Hanok revitalization, the rekindling and revaluing of human behaviors and interests in local goverments following the social and cultural changes of the past decades, has emeraged as an increasingly traditional area of concerning in New Hanok planning. In this paper we attempt to this discussion by describing recent projects in New Hanok revitalization in Jeollanam-do Province. Therefore, this study aims to examine the classification of compound knowledges based multidimensional relationship by using Self-Organizing Maps (SOM). SOM is an unsupervised learning neural network model for the analysis of high-dimensional input data. By using SOM, we were able to create a cluster map reflecting the characteristics of the New Hanok. In this case the pattern of the preference data was easily understood by visual analysis. Liking for compound knowledge deduced from this data was classified into 8 categories according to the compound knowledge properties of New Hanok. As a result, a systematic approach for analysis the characteristics of individual family and living environment of New Hanoks and 10 space usage patterns the changes in some aspects of New Hanok.

3D Human Shape Deformation using Deep Learning (딥러닝을 이용한 3차원 사람모델형상 변형)

  • Kim, DaeHee;Hwang, Bon-Woo;Lee, SeungWook;Kwak, Sooyeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.19-27
    • /
    • 2020
  • Recently, rapid and accurate 3D models creation is required in various applications using virtual reality and augmented reality technology. In this paper, we propose an on-site learning based shape deformation method which transforms the clothed 3D human model into the shape of an input point cloud. The proposed algorithm consists of two main parts: one is pre-learning and the other is on-site learning. Each learning consists of encoder, template transformation and decoder network. The proposed network is learned by unsupervised method, which uses the Chamfer distance between the input point cloud form and the template vertices as the loss function. By performing on-site learning on the input point clouds during the inference process, the high accuracy of the inference results can be obtained and presented through experiments.

Unsupervised Abstractive Summarization Method that Suitable for Documents with Flows (흐름이 있는 문서에 적합한 비지도학습 추상 요약 방법)

  • Lee, Hoon-suk;An, Soon-hong;Kim, Seung-hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.501-512
    • /
    • 2021
  • Recently, a breakthrough has been made in the NLP area by Transformer techniques based on encoder-decoder. However, this only can be used in mainstream languages where millions of dataset are well-equipped, such as English and Chinese, and there is a limitation that it cannot be used in non-mainstream languages where dataset are not established. In addition, there is a deflection problem that focuses on the beginning of the document in mechanical summarization. Therefore, these methods are not suitable for documents with flows such as fairy tales and novels. In this paper, we propose a hybrid summarization method that does not require a dataset and improves the deflection problem using GAN with two adaptive discriminators. We evaluate our model on the CNN/Daily Mail dataset to verify an objective validity. Also, we proved that the model has valid performance in Korean, one of the non-mainstream languages.

Development of Mining model through reproducibility assessment in Adverse drug event surveillance system (약물부작용감시시스템에서 재현성 평가를 통한 마이닝 모델 개발)

  • Lee, Young-Ho;Yoon, Young-Mi;Lee, Byung-Mun;Hwang, Hee-Joung;Kang, Un-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.3
    • /
    • pp.183-192
    • /
    • 2009
  • ADESS(Adverse drug event surveillance system) is the system which distinguishes adverse drug events using adverse drug signals. This system shows superior effectiveness in adverse drug surveillance than current methods such as volunteer reporting or char review. In this study, we built clinical data mart(CDM) for the development of ADESS. This CDM could obtain data reliability by applying data quality management and the most suitable clustering number(n=4) was gained through the reproducibility assessment in unsupervised learning techniques of knowledge discovery. As the result of analysis, by applying the clustering number(N=4) K-means, Kohonen, and two-step clustering models were produced and we confirmed that the K-means algorithm makes the most closest clustering to the result of adverse drug events.

Image Clustering Using Machine Learning : Study of InceptionV3 with K-means Methods. (머신 러닝을 사용한 이미지 클러스터링: K-means 방법을 사용한 InceptionV3 연구)

  • Nindam, Somsauwt;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.681-684
    • /
    • 2021
  • In this paper, we study image clustering without labeling using machine learning techniques. We proposed an unsupervised machine learning technique to design an image clustering model that automatically categorizes images into groups. Our experiment focused on inception convolutional neural networks (inception V3) with k-mean methods to cluster images. For this, we collect the public datasets containing Food-K5, Flowers, Handwritten Digit, Cats-dogs, and our dataset Rice Germination, and the owner dataset Palm print. Our experiment can expand into three-part; First, format all the images to un-label and move to whole datasets. Second, load dataset into the inception V3 extraction image features and transferred to the k-mean cluster group hold on six classes. Lastly, evaluate modeling accuracy using the confusion matrix base on precision, recall, F1 to analyze. In this our methods, we can get the results as 1) Handwritten Digit (precision = 1.000, recall = 1.000, F1 = 1.00), 2) Food-K5 (precision = 0.975, recall = 0.945, F1 = 0.96), 3) Palm print (precision = 1.000, recall = 0.999, F1 = 1.00), 4) Cats-dogs (precision = 0.997, recall = 0.475, F1 = 0.64), 5) Flowers (precision = 0.610, recall = 0.982, F1 = 0.75), and our dataset 6) Rice Germination (precision = 0.997, recall = 0.943, F1 = 0.97). Our experiment showed that modeling could get an accuracy rate of 0.8908; the outcomes state that the proposed model is strongest enough to differentiate the different images and classify them into clusters.

Analysis of deep learning-based deep clustering method (딥러닝 기반의 딥 클러스터링 방법에 대한 분석)

  • Hyun Kwon;Jun Lee
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.61-70
    • /
    • 2023
  • Clustering is an unsupervised learning method that involves grouping data based on features such as distance metrics, using data without known labels or ground truth values. This method has the advantage of being applicable to various types of data, including images, text, and audio, without the need for labeling. Traditional clustering techniques involve applying dimensionality reduction methods or extracting specific features to perform clustering. However, with the advancement of deep learning models, research on deep clustering techniques using techniques such as autoencoders and generative adversarial networks, which represent input data as latent vectors, has emerged. In this study, we propose a deep clustering technique based on deep learning. In this approach, we use an autoencoder to transform the input data into latent vectors, and then construct a vector space according to the cluster structure and perform k-means clustering. We conducted experiments using the MNIST and Fashion-MNIST datasets in the PyTorch machine learning library as the experimental environment. The model used is a convolutional neural network-based autoencoder model. The experimental results show an accuracy of 89.42% for MNIST and 56.64% for Fashion-MNIST when k is set to 10.

An Outlier Detection Using Autoencoder for Ocean Observation Data (해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구)

  • Kim, Hyeon-Jae;Kim, Dong-Hoon;Lim, Chaewook;Shin, Yongtak;Lee, Sang-Chul;Choi, Youngjin;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.265-274
    • /
    • 2021
  • Outlier detection research in ocean data has traditionally been performed using statistical and distance-based machine learning algorithms. Recently, AI-based methods have received a lot of attention and so-called supervised learning methods that require classification information for data are mainly used. This supervised learning method requires a lot of time and costs because classification information (label) must be manually designated for all data required for learning. In this study, an autoencoder based on unsupervised learning was applied as an outlier detection to overcome this problem. For the experiment, two experiments were designed: one is univariate learning, in which only SST data was used among the observation data of Deokjeok Island and the other is multivariate learning, in which SST, air temperature, wind direction, wind speed, air pressure, and humidity were used. Period of data is 25 years from 1996 to 2020, and a pre-processing considering the characteristics of ocean data was applied to the data. An outlier detection of actual SST data was tried with a learned univariate and multivariate autoencoder. We tried to detect outliers in real SST data using trained univariate and multivariate autoencoders. To compare model performance, various outlier detection methods were applied to synthetic data with artificially inserted errors. As a result of quantitatively evaluating the performance of these methods, the multivariate/univariate accuracy was about 96%/91%, respectively, indicating that the multivariate autoencoder had better outlier detection performance. Outlier detection using an unsupervised learning-based autoencoder is expected to be used in various ways in that it can reduce subjective classification errors and cost and time required for data labeling.

A Novel Approach for Blind Estimation of Reverberation Time using Gamma Distribution Model

  • Hamza, Amad;Jan, Tariqullah;Jehangir, Asiya;Shah, Waqar;Zafar, Haseeb;Asif, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.529-536
    • /
    • 2016
  • In this paper we proposed an unsupervised algorithm to estimate the reverberation time (RT) directly from the reverberant speech signal. For estimation process we use maximum likelihood estimation (MLE) which is a very well-known and state of the art method for estimation in the field of signal processing. All existing RT estimation methods are based on the decay rate distribution. The decay rate can be obtained either from the energy envelop decay curve analysis of noise source when it is switch off or from decay curve of impulse response of an enclosure. The analysis of a pre-existing method of reverberation time estimation is the foundation of the proposed method. In one of the state of the art method, the reverberation decay is modeled as a Laplacian distribution. In this paper, the proposed method models the reverberation decay as a Gamma distribution along with the unification of an effective technique for spotting free decay in reverberant speech. Maximum likelihood estimation technique is then used to estimate the RT from the free decays. The method was motivated by our observation that the RT of a reverberant signal when falls in specific range, then the decay rate of the signal follows Gamma distribution. Experiments are carried out on different reverberant speech signal to measure the accuracy of the suggested method. The experimental results reveal that the proposed method performs better and the accuracy is high in comparison to the state of the art method.

Unsuperised Image Segmentation Algorithm Using Markov Random Fields (마르코프 랜덤필드를 이용한 무관리형 화상분할 알고리즘)

  • Park, Jae-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2555-2564
    • /
    • 2000
  • In this paper, a new unsupervised image segmentation algorithm is proposed. To model the contextual information presented in images, the characteristics of the Markov random fields (MRF) are utilized. Textured images are modeled as realizations of the stationary Gaussian MRF on a two-dimensional square lattice using the conditional autoregressive (CAR) equations with a second-order noncausal neighborhood. To detect boundaries, hypothesis tests over two masked areas are performed. Under the hypothesis, masked areas are assumed to belong to the same class of textures and CAR equation parameters are estimated in a minimum-mean-square-error (MMSE) sense. If the hypothesis is rejected, a measure of dissimilarity between two areas is accumulated on the rejected area. This approach produces potential edge maps. Using these maps, boundary detection can be performed, which resulting no micro edges. The performance of the proposed algorithm is evaluated by some experiments using real images as weB as synthetic ones. The experiments demonstrate that the proposed algorithm can produce satisfactorY segmentation without any a priori information.

  • PDF

Adaptive Facial Expression Recognition System based on Gabor Wavelet Neural Network (가버 웨이블릿 신경망 기반 적응 표정인식 시스템)

  • Lee, Sang-Wan;Kim, Dae-Jin;Kim, Yong-Soo;Bien, Zeungnam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, adaptive Facial Emotional Recognition system based on Gabor Wavelet Neural Network, considering six feature Points in face image to extract specific features of facial expression, is proposed. Levenberg-Marquardt-based training methodology is used to formulate initial network, including feature extraction stage. Therefore, heuristics in determining feature extraction process can be excluded. Moreover, to make an adaptive network for new user, Q-learning which has enhanced reward function and unsupervised fuzzy neural network model are used. Q-learning enables the system to ge optimal Gabor filters' sets which are capable of obtaining separable features, and Fuzzy Neural Network enables it to adapt to the user's change. Therefore, proposed system has a good on-line adaptation capability, meaning that it can trace the change of user's face continuously.