Cables are critical components of cable-stayed bridges. A structural health monitoring system provides real-time cable tension recording for cable health monitoring. However, the measurement data involve multiple sources of variability, i.e., varying environmental and operational factors, which increase the complexity of cable condition monitoring. In this study, a one-class classification method is developed for cable condition assessment using Bayesian factor analysis (FA). The single-peaked vehicle-induced cable tension is assumed to be relevant to vehicle positions and weights. The Bayesian FA is adopted to establish the correlation model between cable tensions and vehicles. Vehicle weights are assumed to be latent variables and the influences of different transverse positions are quantified by coefficient parameters. The Bayesian theorem is employed to estimate the parameters and variables automatically, and the damage index is defined on the basis of the well-trained model. The proposed method is applied to one cable-stayed bridge for cable damage detection. Significant deviations of the damage indices of Cable SJS11 were observed, indicating a damaged condition in 2011. This study develops a novel method to evaluate the health condition of individual cable using the FA in the Bayesian framework. Only vehicle-induced cable tensions are used and there is no need to monitor the vehicles. The entire process, including the data pre-processing, model training and damage index calculation of one cable, takes only 35 s, which is highly efficient.
지구온난화와 인간의 무분별한 활동과 같은 인위적인 요인과 아열대고압대라는 자연적인 요인으로 인해 동아시아 지역의 사막화가 확산되고 있다. 사막화의 확산으로 인하여 우리나라에 영향을 주는 황사의 발원지가 변화하고 있다. 본 연구에서는 황폐한 지역의 토지 피복을 연구하기 위한 유용한 식생지수로 알려진 Normalized Difference Vegetation Index (NDVI)를 이용하여 동아시아 사막 주변의 토지 피복 변화를 관측하여 사막화의 시계열 변화와 패턴을 알아보고자 한다. SPOT위성의 VEGETATION 센서를 통해 동아시아 S10-DAY NDVI 데이터를 1999년부터 2011년까지 취득하였다. 데이터에 포함되어 있는 노이즈값을 제거하기 위해 NDVI Correction, WaterMask를 수행한 후 ISODATA 방법으로 무감독분류를 하였다. 무감독분류 된 클러스터에 대한 분석을 수행한 결과 사막 경계 부분에서 식생의 밀도가 활발하게 변화하고 있는 것을 확인하였으며 특히 고비 사막과 내몽골 고원 그리고 만주 지역을 중심으로 변화가 큰 것을 확인하였다. 2000년대 후반에 들어서 사막의 전체적인 크기는 감소하는 것으로 나타났지만 동쪽으로 사막화가 진행되는 것을 확인하였다.
토마토는 여러 가지 다른 숙성 단계에서 수확될 수 있다. 토마토의 숙성 상태를 판단하기 위해 토마토 과육을 HPLC로 분석한 여러 가지 화합물과 토마토 RGB 이미지를 ICA로 분석한 독립성분간의 관계를 분석하였다. 여러 토마토 화합물중 품질에 가장 영향을 많이 미치는 라이코펜과 토마토 RGB 이미지의 독립성분간의 부분최소제곱 $Q^2$ 값이 0.92로 매우 높음을 알 수 있었다. 그리고 라이코펜에 대응되는 독립성분을 토마토 RGB 이미지에 적용하여 픽셀 면적을 구한 것과 단순이진 이미지로 구해진 이미지의 픽셀 면적간의 비교를 제시하여 독립성분의 유효성을 제시하였다. 독립성분을 반영한 토마토 이미지를 통해 토마토의 숙성 상태를 보여주는 것이 가능하며, ICA 독립성분을 이용한 농축이미지 생성을 통해 토마토의 색상이 좋지 않거나 라이코펜과 같은 주요 성분이 없게 된 토마토를 분류해 내는 것이 가능해진다.
일반적으로 변압기의 고장진단을 위해 IEC 코드법이 사용되지만, 이 방법은 가스비율이 규정된 범위 내에 존재하지 않거나 경계조건에 있는 경우 숙련된 진단 전문가에게 의뢰하지 않고는 정확한 고장의 원인을 판정하는데 어려움이 있다. 이러한 문제점을 해결하기 위하여 본 논문에서는 SOM을 이용한 전력용 변압기의 고장진단 알고리즘을 제안한다. 제안된 방법은 훈련 데이터의 경쟁학습을 통하여 자기 구성 맵을 구축한 후, 실증 데이터를 구축된 맵에 적용하여 고장의 진단이 이루어진다. 또한 클러스터링 기법에 의해 구축된 정상/고장모델과 정상 데이터를 비교함으로써 고장의 추이 및 열화정도를 분석한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해 향상된 진단결과를 보임을 확인할 수 있었다.
Background: Bladder cancer is one of the most common cancers worldwide. Gene expression profiling using microarray technologies improves the understanding of cancer biology. The aim of this study was to determine the gene expression profile in Egyptian bladder cancer patients. Materials and Methods: Samples from 29 human bladder cancers and adjacent non-neoplastic tissues were analyzed by cDNA microarray, with hierarchical clustering and multidimensional analysis. Results: Five hundred and sixteen genes were differentially expressed of which SOS1, HDAC2, PLXNC1, GTSE1, ULK2, IRS2, ABCA12, TOP3A, HES1, and SRP68 genes were involved in 33 different pathways. The most frequently detected genes were: SOS1 in 20 different pathways; HDAC2 in 5 different pathways; IRS2 in 3 different pathways. There were 388 down-regulated genes. PLCB2 was involved in 11 different pathways, MDM2 in 9 pathways, FZD4 in 5 pathways, p15 and FGF12 in 4 pathways, POLE2 in 3 pathways, and MCM4 and POLR2E in 2 pathways. Thirty genes showed significant differences between transitional cell cancer (TCC) and squamous cell cancer (SCC) samples. Unsupervised cluster analysis of DNA microarray data revealed a clear distinction between low and high grade tumors. In addition 26 genes showed significant differences between low and high tumor stages, including fragile histidine triad, Ras and sialyltransferase 8 (alpha) and 16 showed significant differences between low and high tumor grades, like methionine adenosyl transferase II, beta. Conclusions: The present study identified some genes, that can be used as molecular biomarkers or target genes in Egyptian bladder cancer patients.
Yoon, Hyun Jin;Jeong, Young Jin;Kang, Hyun;Jeong, Ji Eun;Kang, Do-Young
한국의학물리학회지:의학물리
/
제30권2호
/
pp.49-58
/
2019
Purpose: Automated analytical systems have begun to emerge as a database system that enables the scanning of medical images to be performed on computers and the construction of big data. Deep-learning artificial intelligence (AI) architectures have been developed and applied to medical images, making high-precision diagnosis possible. Materials and Methods: For diagnosis, the medical images need to be labeled and standardized. After pre-processing the data and entering them into the deep-learning architecture, the final diagnosis results can be obtained quickly and accurately. To solve the problem of overfitting because of an insufficient amount of labeled data, data augmentation is performed through rotation, using left and right flips to artificially increase the amount of data. Because various deep-learning architectures have been developed and publicized over the past few years, the results of the diagnosis can be obtained by entering a medical image. Results: Classification and regression are performed by a supervised machine-learning method and clustering and generation are performed by an unsupervised machine-learning method. When the convolutional neural network (CNN) method is applied to the deep-learning layer, feature extraction can be used to classify diseases very efficiently and thus to diagnose various diseases. Conclusions: AI, using a deep-learning architecture, has expertise in medical image analysis of the nerves, retina, lungs, digital pathology, breast, heart, abdomen, and musculo-skeletal system.
식생의 토지피복은 지구시스템의 일반적인 순환이나 탄소 교환 모델을 설명하기 위한 중요한 변수이다. 본 연구의 동아시아지역의 식생의 상태를 모니터링하고 그에 따른 변화를 이해하는 것이 주목적이다. SPOT VGT센서로부터 취득된 1999년부터 2010년의 NDVI 10-day MVC자료를 이용하였으며 12년간의 토지피복 변화를 비교 분석하였다. 최종적으로 분류된 class를 토지피복에 따라 각각의 class에 해당하는 1999년과 2010년의 Dynamic zone과 Static zone을 나누어 Dynamic zone에 대한 positive change zone과 negative change zone에 대한 분석을 수행하였다. 따라서 각 class에 해당하는 피복들이 대다수 2010년으로 갈수록 변화가 나타나고 있으며 실제 사막지역이 동진하여 식생의 변화가 나타나고 있다는 것을 12년 동안의 자료를 분석하여 확인하였다.
온라인상에서 다루어지는 비정형 텍스트 데이터는 대용량이면서 비구조적 형태의 특성을 가지고 있기 때문에, 기존 관계형 데이터 모델의 저장 방식과 분석 방법만으로는 한계가 있다. 더군다나, 동적으로 발생하는 대량의 소셜 데이터를 활용하여 이용자의 반응을 실시간으로 분석하기란 어려운 상황이다. 이에 본 논문에서는 대용량 비정형 데이터(문서)의 의미를 빠르고, 용이하게 파악하기 위하여 데이터 셋에 대한 사전학습 없이, 문서 내 단어 비중에 따라 자동으로 토픽(주제)이 추출되는 시스템을 설계 및 구현하였다. 제안된 시스템의 토픽 모델링에 사용될 입력 단어는 N-gram 알고리즘에 의하여 도출되어 복수 개의 단어도 묶음 처리할 수 있게 했으며, 또한, 대용량 비정형 데이터 저장 및 연산을 위하여 Hadoop과 분산 인메모리 처리 프레임워크인 Spark 기반 클러스터를 구성하여, 토픽 모델 연산을 수행하였다. 성능 실험에서는 TB급의 소셜 댓글 데이터를 읽어 들여, 전체 데이터에 대한 전처리 과정과 특정 항목의 토픽 추출 작업을 수행하였으며, 대용량 데이터를 클러스터의 디스크가 아닌 메모리에 바로 적재 후, 처리함으로써 토픽 추출 성능의 우수성을 확인할 수 있었다.
본 논문에서는 대용량 비디오 영상에서 오토인코더를 이용하여 파랑 전파시 수리동역학적 장면만을 분리하는 방법에 대해 소개한다. 연안에서 센서를 이용한 파랑의 직접적 관측의 어려움으로 인해 비디오 영상을 이용한 입자 추적, 옵티컬 플로우 등의 이미지 분석 방법이 주로 활용되고 있다. 하지만 이미지 분석 방법은 주변광 및 기상상태 등 외부 요인에 의한 영향으로 파랑에 대한 정확한 분석에 어려움이 있다. 제안하는 방법은 비디오 영상으로부터 주변광의 영항을 최소화하고, 순수 파랑 전파시 파랑의 움직임 만을 분리하여 수리동역학적 장면을 추출한다. 실제 해역 및 수리 모형 실험에서 촬영된 비디오 영상에 제안하는 방법을 적용하여 원본 영상으로부터 주변광에 의한 영향과 배경을 잘 분리하여 파랑 전파에 따른 수리동역학적 파랑 이동 장면이 잘 추출되었음을 시각적으로 확인하였다. 또한 변분 오토인코더의 잠재표현 학습을 통해 얻은 원본 비디오 영상에 대한 잠재 표현은 주변광과 배경 요인에 의해 지배적으로 결정되는 반면, 파랑 이동 장면은 해당 요인에 관계없이 독립적으로 잘 표현되는 것을 알 수 있었다.
최근 코로나 19발생과 동시에 소셜 미디어의 투자자 정서가 증시 가격 움직임을 주도해 관심을 모으고 있다. 본 연구는 행동금융 이론 기반 빅 데이터 분석을 활용하여 소셜 미디어에서 추출한 정서가 중국 증시의 실시간 및 단기적 가격 모멘텀을 예측하는데 활용될 수 있는 기법을 제안한다. 이를 위해, COVID-19와 관련 200만 건 이상의 시나 웨이보 빅 데이터를 키워드 방식으로 수집 및 분석하고 시간이 따른 영향력이 높은 감정 요인을 추출한다. 최종 결과 도출을 위해 다양한 지도 및 비지도 학습 모델을 다 각도에서 구현 및 성능평가를 비교 분석 후, BiLSTM mdoel이 최적의 결과를 낼 수 있음을 증명했다. 또한, 제안하는 기법을 통해 주가변동과 심리요인 간에도 비슷한 움직임을 보이고 있음을 제안했고 소셜미디어에서 추출한 공공분위기가 어느 정도 투자자들의 심리를 대변할 수 있고, 주식시장에 영향을 미칠 수 있는 특수행사에 몰두할 때 증시변동에 차이를 만들 수 있음을 증명했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.