DOI QR코드

DOI QR Code

Sensitivity of abacus and Chasdaq in the Chinese stock market through analysis of Weibo sentiment related to Corona-19

코로나-19관련 웨이보 정서 분석을 통한 중국 주식시장의 주판 및 차스닥의 민감도 예측 기법

  • Li, Jiaqi (Department of Business Administration, Sungkyunkwan University) ;
  • Oh, Hayoung (Global Convergence, Sungkyunkwan University)
  • Received : 2020.10.02
  • Accepted : 2020.11.06
  • Published : 2021.01.31

Abstract

Investor mood from social media is gaining increasing attention for leading a price movement in stock market. Based on the behavioral finance theory, this study argues that sentiment extracted from social media using big data technique can predict a real-time (short-run) price momentum in Chinese stock market. Collecting Sina Weibo posts that related to COVID-19 using keyword method, a daily influential weighted sentiment factors is extracted from the sizable raw data of over 2 millions of posts. We examine one supervised and 4 unsupervised sentiment analysis model, and use the best performed word-frequency and BiLSTM mdoel. The test result shows a similar movement between stock price change and sentiment factor. It indicates that public mood extracted from social media can in some extent represent the investors' sentiment and make a difference in stock market fluctuation when people are concentrating on a special events that can cause effect on the stock market.

최근 코로나 19발생과 동시에 소셜 미디어의 투자자 정서가 증시 가격 움직임을 주도해 관심을 모으고 있다. 본 연구는 행동금융 이론 기반 빅 데이터 분석을 활용하여 소셜 미디어에서 추출한 정서가 중국 증시의 실시간 및 단기적 가격 모멘텀을 예측하는데 활용될 수 있는 기법을 제안한다. 이를 위해, COVID-19와 관련 200만 건 이상의 시나 웨이보 빅 데이터를 키워드 방식으로 수집 및 분석하고 시간이 따른 영향력이 높은 감정 요인을 추출한다. 최종 결과 도출을 위해 다양한 지도 및 비지도 학습 모델을 다 각도에서 구현 및 성능평가를 비교 분석 후, BiLSTM mdoel이 최적의 결과를 낼 수 있음을 증명했다. 또한, 제안하는 기법을 통해 주가변동과 심리요인 간에도 비슷한 움직임을 보이고 있음을 제안했고 소셜미디어에서 추출한 공공분위기가 어느 정도 투자자들의 심리를 대변할 수 있고, 주식시장에 영향을 미칠 수 있는 특수행사에 몰두할 때 증시변동에 차이를 만들 수 있음을 증명했다.

Keywords

References

  1. C. Xie and Y. Wang, "Does Online Investor Sentiment Affect the Asset Price Movement? Evidence from the Chinese Stock Market," Mathematical Problems in Engineering, pp. 1-11, 2017.
  2. A. Carosia, G. P. Coelho, and A. E. A. Silva, "Analyzing the Brazilian Financial Market through Portuguese Sentiment Analysis in Social Media," Applied Artificial Intelligence, vol. 34, no. 1, pp. 1-19, 2020. https://doi.org/10.1080/08839514.2019.1673037
  3. Report of Investigation of Individual Investors Condition in 2017 by SHENZHEN STOCK EXCHANGE [Internet] Available: https://www.sac.net.cn/hyfw/hydt/201803/t20180319_134756.html.
  4. Survey of stock market investors condition report in 2019 [Internet] Available: https://www.sac.net.cn/hyfw/hydt/202003/t20200330_142269.html.
  5. Q. Lin, "Noisy prices and the Fama-French five-factor asset pricing model in China," Emerging Markets Review, vol. 31, pp. 141-163, 2017. https://doi.org/10.1016/j.ememar.2017.04.002
  6. Weibo's monthly active users over 550 million, revenue surpassed Wall Street's expectations, 2020, June, 4 th [Internet] Available: https://caijing.chinadaily.com.cn/a/202005/20/WS5ec4bf1ea310eec9c72ba2ec.html.
  7. I. Zheludev, R. Smith, and T. Aste, "When Can Social Media Lead Financial Markets?," Scientific Reports, pp. 1-12, 2014.
  8. K. Guo, Y. Sun, and X. Qian, "Can investor sentiment be used to predict the stock price? Dynamic analysis based on China stock market," Physica A, vol. 469, pp. 390-396, 2017. https://doi.org/10.1016/j.physa.2016.11.114
  9. L. Xu, H. Lin, and J. Zhao, "Construction and analysis of emotional corpus," Journal of Chinese Information Processing, vol. 22, no. 1, pp. 116-122, 2008. https://doi.org/10.3969/j.issn.1003-0077.2008.01.019
  10. J. Li, G. Huang, C. Fan, Z. Sun, and H. Zhu, "Key word extraction for short text via word2vec, doc2vec, and textrank," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 27, no. 3, pp. 1794-1805, 2019. https://doi.org/10.3906/elk-1806-38
  11. H. Zhou, M. Huang, X. Zhu, and B. Liu. "Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory," AAAI 2018, New Orleans, Louisiana, USA, 2018.
  12. D. D. Wu, L. Zheng, and D. L. Olson, "A Decision Support Approach for Online Stock Forum Sentiment Analysis," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 44, no. 8, pp. 1077-1087, 2014. https://doi.org/10.1109/TSMC.2013.2295353