• 제목/요약/키워드: unstructured data mining

검색결과 180건 처리시간 0.022초

Rating and Comments Mining Using TF-IDF and SO-PMI for Improved Priority Ratings

  • Kim, Jinah;Moon, Nammee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5321-5334
    • /
    • 2019
  • Data mining technology is frequently used in identifying the intention of users over a variety of information contexts. Since relevant terms are mainly hidden in text data, it is necessary to extract them. Quantification is required in order to interpret user preference in association with other structured data. This paper proposes rating and comments mining to identify user priority and obtain improved ratings. Structured data (location and rating) and unstructured data (comments) are collected and priority is derived by analyzing statistics and employing TF-IDF. In addition, the improved ratings are generated by applying priority categories based on materialized ratings through Sentiment-Oriented Point-wise Mutual Information (SO-PMI)-based emotion analysis. In this paper, an experiment was carried out by collecting ratings and comments on "place" and by applying them. We confirmed that the proposed mining method is 1.2 times better than the conventional methods that do not reflect priorities and that the performance is improved to almost 2 times when the number to be predicted is small.

장비점검 일지의 비정형 데이터분석을 통한 고장 대응 효율화 사례 연구 (Unstructured Data Analysis using Equipment Check Ledger: A Case Study in Telecom Domain)

  • 주연진;김유신;정승렬
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.127-135
    • /
    • 2020
  • 비정형 데이터의 수집, 분석 그리고 활용에 대한 필요성이 대두되고 있지만 여전히 비정형 데이터를 효과적으로 활용하지 못하고 있는 실정이다. 본 연구에서는 국내 유수 이동통신 기업의 통신 시설장비 점검 시스템에 기록된 비정형데이터를 분석하여 장비고장 대응과 예방에 적극 활용할 수 있는 기반을 만들고자 하였고, 약 220만 건의 작업일지 데이터를 텍스트 마이닝을 통해 구조화/정형화 하였다. 이를 위해 장비 고장과 관련된 4가지 분석 프레임, 고장인지, 고장원인, 고장대상, 조치결과를 구성하였고 분석 결과로는 크게 3가지의 효율화 방안과 관련한 인사이트를 얻을 수 있었다. 첫 번째로는 신속한 조치를 통한 시간 단축을 도모하고, 두 번째로는 고장장비 Unit 수요를 예측하고, 마지막으로 현장 출동의 최소화를 지원할 수 있을 것으로 기대되었다. 결론적으로, 본 사례연구는 통신시설 장비 고장 대응을 위해 데이터 분석 대상을 정형 데이터뿐만 아니라 장비일지라는 비정형 빅데이터로도 범위를 확장했으며, 이를 분석에 활용하기 위해 처음으로 텍스트 마이닝을 시도를 했다는데 의의를 가진다. 또한 N사는 정형 데이터 뿐 만아니라 년 80만 건씩 축적되던 비정형 데이터의 활용 가치를 확인할 수 있던 기회를 가졌으며, 향후 비정형 데이터의 활용 방안에 대한 발전방향 그리고 추후의 정형 데이터와의 연계 분석 방안 등에 대한 가이드를 확보할 수 있었다.

군집화 기반 프로세스 마이닝을 이용한 커리큘럼 마이닝 분석 (Curriculum Mining Analysis Using Clustering-Based Process Mining)

  • 주우민;최진영
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.45-55
    • /
    • 2015
  • In this paper, we consider curriculum mining as an application of process mining in the domain of education. The basic objective of the curriculum mining is to construct a registration pattern model by using logs of registration data. However, subject registration patterns of students are very unstructured and complicated, called a spaghetti model, because it has a lot of different cases and high diversity of behaviors. In general, it is typically difficult to develop and analyze registration patterns. In the literature, there was an effort to handle this issue by using clustering based on the features of students and behaviors. However, it is not easy to obtain them in general since they are private and qualitative. Therefore, in this paper, we propose a new framework of curriculum mining applying K-means clustering based on subject attributes to solve the problems caused by unstructured process model obtained. Specifically, we divide subject's attribute data into two parts : categorical and numerical data. Categorical attribute has subject name, class classification, and research field, while numerical attribute has ABEEK goal and semester information. In case of categorical attribute, we suggest a method to quantify them by using binarization. The number of clusters used for K-means clustering, we applied Elbow method using R-squared value representing the variance ratio that can be explained by the number of clusters. The performance of the suggested method was verified by using a log of student registration data from an 'A university' in terms of the simplicity and fitness, which are the typical performance measure of obtained process model in process mining.

빅데이터 분석 도구 R을 이용한 비정형 데이터 텍스트 마이닝과 시각화 (Text Mining and Visualization of Unstructured Data Using Big Data Analytical Tool R)

  • 남수태;신성윤;진찬용
    • 한국정보통신학회논문지
    • /
    • 제25권9호
    • /
    • pp.1199-1205
    • /
    • 2021
  • 빅데이터 시대에는 단순히 데이터베이스에 잘 정리된 정형 데이터뿐만 아니라 인터넷, 소셜 네트워크 서비스, 모바일 환경에서 실시간 생성되는 웹 문서, 이메일, 소셜 데이터 등 비정형 빅데이터를 효과적으로 분석하는 것이 매우 중요하다. 빅데이터 분석은 데이터 저장소에 저장된 빅데이터 속에서 의미 있는 새로운 상관관계, 패턴, 추세를 발견하여 새로운 가치를 창출하는 과정이다. 빅데이터 분석 도구인 R 언어를 이용하여 비정형 논문 데이터를 빈도분석을 통해 분석결과를 요약과 시각화하고자 한다. 본 연구에서 사용된 데이터는 한국정보통신학회 학회지 논문 중에서 2021년 1월호-5월호 총 논문 104편을 대상으로 분석하였다. 최종 분석결과 가장 많이 언급된 키워드는 "데이터"가 1,538회로 1위를 차지하였다. 따라서 분석결과를 바탕으로 연구의 한계와 이론적 실무적 시사점을 제시하고자 한다.

항공안전 보고 데이터 텍스트 분석 기반 조성을 위한 비식별 처리 기술 적용 연구 (A Study on De-Identification Methods to Create a Basis for Safety Report Text Mining Analysis)

  • 황도빈;김영곤;심영민
    • 한국항공운항학회지
    • /
    • 제29권4호
    • /
    • pp.160-165
    • /
    • 2021
  • In order to identify and analyze potential aviation safety hazards, analysis of aviation safety report data must be preceded. Therefore, in consideration of the provisions of the Aviation Safety Act and the recommendations of ICAO Doc 9859 SMM Edition 4th, personal information in the reporting data and sensitive information of the reporter, etc. It identifies the scope of de-identification targets and suggests a method for applying de-identification processing technology to personal and sensitive information including unstructured text data.

키워드 기반 주제중심 분석을 이용한 비정형데이터 처리 (Unstructured Data Processing Using Keyword-Based Topic-Oriented Analysis)

  • 고명숙
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제6권11호
    • /
    • pp.521-526
    • /
    • 2017
  • 데이터는 데이터 형식이 다양하고 방대할 뿐만 아니라 그 생성 속도가 매우 빨라 기존의 데이터 처리 방식이 아닌 새로운 관리 및 분석 방법이 요구된다. 소셜 네트워크 상의 온라인 문서에서 인간의 언어로 쓰여진 비정형 텍스트에서 Text Mining기법을 사용하여 유용한 정보를 추출할 수 있다. 소셜미디어에 남긴 정치, 경제, 문화에 대한 메시지에 대한 경향을 파악하는 것이 어떤 주제에 관심을 가지고 있는지를 파악할 수 있는 요소가 된다. 본 연구에서는 주제 중심 분석 기법을 이용하여 주어진 키워드에 관한 온라인 뉴스를 대상으로 텍스트 마이닝을 수행하였다. LDA(Latent Dirichiet Allocation)를 이용하여 웹문서로부터 정보를 추출하고 이로부터 사람들이 실제로 주어진 키워드에 대하여 어떤 주제에 관심이 있고 관련된 핵심 가치 중 어떤 주제를 중심으로 전파되고 있는지를 분석하였다.

한국도로공사 VOC 데이터를 이용한 토픽 모형 적용 방안 (Application of a Topic Model on the Korea Expressway Corporation's VOC Data)

  • 김지원;박상민;박성호;정하림;윤일수
    • 한국IT서비스학회지
    • /
    • 제19권6호
    • /
    • pp.1-13
    • /
    • 2020
  • Recently, 80% of big data consists of unstructured text data. In particular, various types of documents are stored in the form of large-scale unstructured documents through social network services (SNS), blogs, news, etc., and the importance of unstructured data is highlighted. As the possibility of using unstructured data increases, various analysis techniques such as text mining have recently appeared. Therefore, in this study, topic modeling technique was applied to the Korea Highway Corporation's voice of customer (VOC) data that includes customer opinions and complaints. Currently, VOC data is divided into the business areas of Korea Expressway Corporation. However, the classified categories are often not accurate, and the ambiguous ones are classified as "other". Therefore, in order to use VOC data for efficient service improvement and the like, a more systematic and efficient classification method of VOC data is required. To this end, this study proposed two approaches, including method using only the latent dirichlet allocation (LDA), the most representative topic modeling technique, and a new method combining the LDA and the word embedding technique, Word2vec. As a result, it was confirmed that the categories of VOC data are relatively well classified when using the new method. Through these results, it is judged that it will be possible to derive the implications of the Korea Expressway Corporation and utilize it for service improvement.

텍스트 마이닝 알고리즘을 이용한 기상청 연구개발분야 과제의 추세 분석 (Analysis of patterns in meteorological research and development using a text-mining algorithm)

  • 박홍주;김하빈;박태영;이영섭
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.935-947
    • /
    • 2016
  • 이 연구에서는 비정형 자료 분석 기법 중 하나인 텍스트 마이닝 기법으로 기상청 연구개발분야 과제의 동향에 대하여 분석하였다. 이를 위하여 용어사전을 구축하고, 전처리를 하여 용어-문서 행렬을 만들었다. 이것을 이용해 연도별 용어 빈도수를 측정하고, 자주 나타나는 단어들에 대해서는 상대도수의 변화에 대해서 관찰하였다. 그리고 회귀 분석을 사용하여 증가추세와 감소추세를 가지는 용어들을 파악하였다. 이러한 분석으로 기상청 최근 연구개발 분야의 트렌드를 파악하였다. 이와 같은 연구는 향후 기상청 연구개발에 관한 기초 자료로 사용될 수 있으며, 연구개발의 방향성과 청사진을 제시하는데 이용될 수 있을 것이다.

텍스트마이닝을 이용한 약물유해반응 보고자료 분석 (Analysis of Adverse Drug Reaction Reports using Text Mining)

  • 김현희;유기연
    • 한국임상약학회지
    • /
    • 제27권4호
    • /
    • pp.221-227
    • /
    • 2017
  • Background: As personalized healthcare industry has attracted much attention, big data analysis of healthcare data is essential. Lots of healthcare data such as product labeling, biomedical literature and social media data are unstructured, extracting meaningful information from the unstructured text data are becoming important. In particular, text mining for adverse drug reactions (ADRs) reports is able to provide signal information to predict and detect adverse drug reactions. There has been no study on text analysis of expert opinion on Korea Adverse Event Reporting System (KAERS) databases in Korea. Methods: Expert opinion text of KAERS database provided by Korea Institute of Drug Safety & Risk Management (KIDS-KD) are analyzed. To understand the whole text, word frequency analysis are performed, and to look for important keywords from the text TF-IDF weight analysis are performed. Also, related keywords with the important keywords are presented by calculating correlation coefficient. Results: Among total 90,522 reports, 120 insulin ADR report and 858 tramadol ADR report were analyzed. The ADRs such as dizziness, headache, vomiting, dyspepsia, and shock were ranked in order in the insulin data, while the ADR symptoms such as vomiting, 어지러움, dizziness, dyspepsia and constipation were ranked in order in the tramadol data as the most frequently used keywords. Conclusion: Using text mining of the expert opinion in KIDS-KD, frequently mentioned ADRs and medications are easily recovered. Text mining in ADRs research is able to play an important role in detecting signal information and prediction of ADRs.

국내 소비자의 일본 패션제품에 대한 정치적 소비 연구 (Korean Consumers' Political Consumption of Japanese Fashion Products)

  • 최영현;이규혜
    • 한국의류학회지
    • /
    • 제44권2호
    • /
    • pp.295-309
    • /
    • 2020
  • In 2019, Japan announced trade regulations against Korean products; consequently, the sales of Japanese products in Korea dropped due to a Korean consumers' boycott. This study measured the Korean consumers' political consumption behavior toward Japanese fashion products. Unstructured text data from online media sources and consumer posted sources such as blog and SNS were collected. Text mining techniques and semantic network analysis were used to process unstructured data. This study used text mining techniques and semantic network analysis to process data. The results identified boycotting Japanese fashion products and buycotting alternative products and Korean brands due to consumers' political consumption. Two brand cases were investigated in detail. Online text data before and after the political action were compared and significant changes in consumption as well as emotional expressions were identified. Product related industry sectors were identified in terms of the political consumption of fashion: liquor, automobile and tourism industry sectors were closely linked to the fashion sector in terms of boycotting. More "boycott" and "buycott" fashion brands (reflected in consumer attitudes and feelings) were detected in consumer driven texts than in media driven sources.