• Title/Summary/Keyword: unsteady lift

Search Result 141, Processing Time 0.026 seconds

Aerodynamic Design of a Novel Low-Reynolds-Number Airfoil for Near Space Propellers

  • Zhang, Shunlei;Yang, Xudong;Song, Bifeng;Song, Wenping
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.53-57
    • /
    • 2015
  • For improving the efficiency of near space propellers working over 20km, performances of their streamwise sections, i.e. low-Reynolds-number airfoils which work at $10^4-10^5$ Reynolds numbers, are significant. Based on the low-Reynolds-number CFD technology, this paper designs a novel low-Reynolds-number airfoil. Unsteady characteristics of the laminar separation bubble on novel airfoil and a typical conventional airfoil are studied numerically, and the Reynolds number effect is investigated. Results show that at $10^4-10^5$ Reynolds numbers, unsteady aerodynamic characteristics of the novel airfoil are severely weakened and its lift-to-drag ratio can increase about 100%.

Numerical Analysis of Unsteady Flow around a Transversely Oscillating Circular Cylinder

  • Moon, Ji-Soo;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • The relationship between the excitation frequency and the vortex shedding frequency is analyzed during the oscillation of the circular cylinder. Two-dimension unsteady Navier-Stoke's equation is calculated by using the Optimized High Order Compact (OHOC) scheme. The flow condition is Mach number 0.3 and Reynold's number 1000. From the results acquired by calculation, it can be inferred that, when the excitation frequency is near the vortex shedding frequency at the fixed cylinder wake, the oscillation frequency of lift and drag coefficients appears to lock-on. The lock-on refers to a phenomenon in which the aerodynamic coefficient appears as one primary oscillation frequency through excitation and its amplitude is amplified. In the non-lock-on zone, the excitation frequency is not in the lock-on mode anymore and beat is formed in which two or more primary oscillation frequencies of the aerodynamic coefficient are mixed together.

Lift and Drag of a Circular Cylinder by the Discrete Vortex Method (이산 보오텍스법에 의한 원주의 양력 및 항력)

  • D.K.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.40-46
    • /
    • 1990
  • Expressions for the lift and the drag exerted on a circular cylinder by an unsteady flow of an ideal fluid with embedded discrete vortices are derived. The formulae can be used in the discrete vortex method of flow simulation. These formulae are derived via contour integration on the complex plane. Terms have been produced which are significantly different from those in Sarpkaya's formulae. These are expected to bring a change to the forces obtained so far.

  • PDF

Numerical Analysis for Flowfield of a Circular Arc Type Sea Anchor by Discrete Vortex Method (이산와법에 의한 원호형 Sea Anchor의 유동장 수치해석)

  • Ro, Ki-Deok;Kwon, Byeong-Guk;An, Heui-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1041-1051
    • /
    • 1998
  • The fluid dynamic properties of a circular arc type sea anchor were calculated by a discrete vortex method. The flow for the surface of the sea anchor was represented by arranging bound vortices at adequate intervals. The simulations were performed by assuming that the separations occur at edges. With time, the drag coefficient was almost constant but the lift coefficient oscillated in a cycle by von Karman's vortex street. As the camber ratios increase, the drag coefficient and Strouhal number were almost constant but the oscillating amplitude of the lift coefficient increased largely.

CFD Modeling of Unsteady Gas-Liquid Flow in a Small Scale Air-Lift Pump (소형 공기 양수 펌프의 불규칙한 가스-액체 흐름의 CFD 모델링)

  • Li, X.S.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.30-37
    • /
    • 2012
  • 공기 양수 펌프는 재생 에너지 분야, 부식 및 마모 특성의 유체의 활용 등 높은 신뢰성과 낮은 유지보수 비용을 필요로 하는 분야에서 그 사용이 증대되고 있다. 본 연구에서는 소형 공기 양수 펌프의 성능 평가 및 기초 데이터를 얻기 위한 연구로, D=0.012~0.019m, L=0.933m인 배관의 침수 깊이(${\beta}$=0.55,0.60,0.65,0.70)에 따른 수치해석을 수행하였다. 수치 해석 및 실험 결과는 유사성을 뛰었으며, 펌프의 사양과 효율은 공기의 질량 유속 비, 침수 깊이 비와 양수 배관의 길이에 관한 함수로 나타났다. 그리고 최대 물과 공기 질량 유속의 비는 각 배관에서 서로 다른 침수 깊이의 비로 나타났으며, 공기 양수 펌프의 최대 효율이 발생되는 운전조건은 슬러그(slug)와 슬러그 교반 정도(slug-churn flow regime)에 따라 나타남을 알 수 있었다.

Hydrodynamic Characteristics of a Small Bee in Hovering Flight

  • Ro, Ki-Deok;Kim, Kwang-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.100-109
    • /
    • 2008
  • The three-dimensional flows in the Weis-Fogh mechanism are studied by flow visualization and numerical simulation by the vortex method. The vortex method. especially the vortex stick method, is employed to investigate the vortex structure in the wake of the two wings. The pressure is estimated by the Bernoulli equation, and the lift on the wing are also obtained. As the results the eddies near the leading edge of each wing in the fling stage take a convex shape because the eddies shed from both tips entrain the flows and the downwash in the rotating stage is deflected toward the outside because the outside tip vortex is stronger than the inside one. And the lift coefficient on the wings in this mechanism is almost independent of the Reynolds number.

Numerical Investigation of Cross-Flow Around a Circular Cylinder at a Low-Reynolds Number Flow Under an Electromagnetic Force

  • Kim, Seong-Jae;Lee, Choung-Mook
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.363-375
    • /
    • 2002
  • The effect of the electromagnetic force (or Lorentz force) on the flow behavior around a circular cylinder is investigated by computation. Two-dimensional unsteady flow computation for Re=10$^2$is carried out using a numerical method of finite difference approximation in a curvilinear body-fitted coordinate system by solving the momentum equations including the Lorentz force as a body force. The effect of spatial variations of the Lorentz forcing region and forcing direction along the cylinder circumference is investigated. The numerical results show that the Lorentz force can effectively suppress the flow separation and oscillation of the lift force of circular cylinder cross-flow, leading to reduction of drag.

Numerical Calculation of Flow Pattern and Fluid Force on a Circular Arc-type Sea Anchor

  • Ro, Ki-Deok;Oh, Se-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1258-1269
    • /
    • 2004
  • The fluid dynamic characteristics of a circular arc type sea anchor were calculated by a discrete vortex method. The flow for the surface of the sea anchor was represented by arranging bound vortices at adequate intervals. The simulations were performed by assuming that the separations occur at edges. With time, the drag coefficient was almost constant but the lift coefficient oscillated in a cycle due to von Karman's vortex street. As the camber ratios increase, the drag coefficient and Strouhal number were almost constant but the oscillating amplitude of the lift coefficient increased largely.

WAKE CHARACTERISTICS BEHIND TWO SPHERES IN A SIDE-BY-SIDE ARRANGEMENT (병렬로 배열된 두 개의 구에서 발생하는 후류의 특성 연구)

  • Kim, Dong-Joo
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.61-67
    • /
    • 2007
  • Numerical simulation of laminar flow over two spheres in a side-by-side arrangement is carried out to investigate the effect of the inter-sphere spacing on the flow characteristics. The Reynolds numbers considered are 100, 250, and 300, covering the steady axisymmetric, steady planar-symmetric, and unsteady planar-symmetric flows in the case of a single sphere. Results show that the drag and lift coefficients and wake structures are significantly modified depending on both the Reynolds number and the spacing between the spheres. At Re=100, the flow is steady planar-symmetric irrespective of the spacing, but it shows some variation according to the spacing at Re=250 and 300. That is, the flow maintains planar symmetry of the single-sphere wake at large spacings, while it loses the symmetry at small spacings due to the generation of new asymmetric vortical structures. It is also shown that the drag and lift coefficients generally increase with decreasing inter-sphere spacing because the high pressure region is formed near the gap between the spheres.

The Effects of Yaw on the Vortex-Shedding Sound from a Circular Cylinder (원형실린더 와류발생 소음에 대한 경사각 효과)

  • 홍훈빈;최종수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.263-270
    • /
    • 1997
  • For a cylinder in a uniform flow stream, sound is generated by the fluctuating pressure on the cylinder surface due to the vortex shedding behind the cylinder. It is known that the major parameters to predict the sound pressure are the characteristic length of the flow along the cylinder axis and the fluctuating lift coefficient. These parameters strongly depend on the Reynolds number and the yaw angle of the cylinder to the free stream. In this experimental study the effects of yaw on the flow parameters, and consequently on the generated sound are investigated. The surface pressure and the radiated sound are measured simultaneously for different yaw angles and showed that the reduced normal velocity component to the cylinder axis reduces the unsteady lift fluctuation which results in lowered sound press-are level, However, experimental result shows that "the cosine law" which uses the normal velocity component as a characteristic velocity for noise Generation from a yawed cylinder needs to be carefully reviewed. reviewed.

  • PDF