Journal of the Korea Institute of Military Science and Technology
/
v.17
no.1
/
pp.96-107
/
2014
Tracking the tactical object is a fundamental affair in network-equipped modern warfare. Geodetic coordinate system based on longitude, latitude, and height is suitable to represent the location of tactical objects considering multi platform data fusion. The motion of tactical object described as a dynamic model requires an appropriate filtering to overcome the system and measurement noise in acquiring information from multiple sensors. This paper introduces the filter suitable for multi-sensor data fusion and tactical object tracking, particularly the unscented transform(UT) and its detail. The UT in Unscented Kalman Filter(UKF) uses a few samples to estimate nonlinear-propagated statistic parameters, and UT has better performance and complexity than the conventional linearization method. We show the effects of UT-based filtering via simulation considering practical tactical object tracking scenario.
Chun Sebum;Lee Eunsung;Kang Taesam;Jee Gyu-In;Lee Young Jae
Journal of Institute of Control, Robotics and Systems
/
v.11
no.7
/
pp.621-626
/
2005
With precise GPS carrier positioning result, we can get attitude information if GPS antenna has adequate attaching position on the vehicle. In this case, baseline length information can be bandied as an additional measurement or constraint. In this paper, we have proposed a method to improve the attitude accuracy. To overcome nonlinearity of baseline observation model, we analyze attitude estimation result using existing estimation method like a least square method and Kalman filter, and apply a new nonlinear estimation method an unscented Kalman filter Finally we confirm the improvement of attitude estimation result in the case of appling the unscented Kalman filter.
Kim Kwang-Jin;Yu Myeong-Jong;Park Young-Bum;Park Chan-Gook
Journal of Institute of Control, Robotics and Systems
/
v.12
no.8
/
pp.780-788
/
2006
This paper deals with INS/GPS tightly coupled integration algorithms using extend Kalman filter (EKF) and unscented Kalman filter (UKF). In the tightly coupled approach, nonlinear pseudorange measurement models are used for the INS/GPS integration Kalman filter. Usually, an EKF is applied for this task, but it may diverge due to poor functional linearization of the nonlinear measurement. The UKF approximates a distribution about the mean using a set of calculated sigma points and achieves an accurate approximation to at least second-order. We introduce the generalized scaled unscented transformation which modifies the sigma points themselves rather than the nonlinear transformation. The generalized scaled method is used to transform the pseudo range measurement of the tightly coupled approach. To compare the performance of the EKF- and UKF-based tightly coupled approach, real van test and simulation have been carried out with feedforward and feedback indirect Kalman filter forms. The results show that the UKF and EKF have an identical performance in case of the feedback filter form, but the superiority of the UKF is demonstrated in case of the feedforward filer form.
In this study, the precise orbit determination (POD) software is developed for optical observation. To improve the performance of the estimation algorithm, a nonlinear batch filter, based on the unscented transform (UT) that overcomes the disadvantages of the least-squares (LS) batch filter, is utilized. The LS and UT batch filter algorithms are verified through numerical simulation analysis using artificial optical measurements. We use the real optical observation data of a low Earth orbit (LEO) satellite, Cryosat-2, observed from optical wide-field patrol network (OWL-Net), to verify the performance of the POD software developed. The effects of light travel time, annual aberration, and diurnal aberration are considered as error models to correct OWL-Net data. As a result of POD, measurement residual and estimated state vector of the LS batch filter converge to the local minimum when the initial orbit error is large or the initial covariance matrix is smaller than the initial error level. However, UT batch filter converges to the global minimum, irrespective of the initial orbit error and the initial covariance matrix.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.49
no.3
/
pp.197-204
/
2021
If a failure or an abnormal maneuver occurs during the flight test of a missile, the missile is deliberately self-destructed so as not to continue the flight. At this time, debris are produced and it is important to estimate the impact area in real-time whether it is out of the safety area. In this paper, we propose a method to estimate the debris dispersion area and falling time in real-time using a Fully-Connected Neural Network (FCNN). We applied the Unscented Transform (UT) to generate a large amount of training data. UT parameters were selected by comparing with Monte-Carlo (MC) simulation to secure reliability. Also, we analyzed the performance of the proposed method by comparing the estimation result of MC.
Strapdown inertial navigation system (SINS) integrated with astronavigation system (ANS) yields reliable mission capability and enhanced navigational accuracy for spacecrafts. The theory and characteristics of integrated system based on unscented Kalman filtering is investigated in this paper. This Kalman filter structure uses unscented transform to approximate the result of applying a specified nonlinear transformation to a given mean and covariance estimate. The filter implementation subsumed here is in a direct feedback mode. Axes misalignment angles of the SINS are observation to the filter. A simple approach for simulation of axes misalignment using stars observation is presented. The SINS error model required for the filtering algorithm is derived in space-stabilized mechanization. Simulation results of the integrated navigation system using a medium accuracy SINS demonstrates the validity of this method on improving the navigation system accuracy with the estimation and compensation for gyros drift, and the position and velocity errors that occur due to the axes misalignments.
Journal of Institute of Control, Robotics and Systems
/
v.19
no.4
/
pp.341-348
/
2013
A location estimation algorithm based on the sea-surface beacon is proposed in this paper. The beacon is utilized to provide ultrasonic signals to the underwater vehicles around the beacon to estimate precise position of underwater vehicles (ROV, AUV, Diver robot), which is named as USBL (Ultra Short Baseline) system. It utilizes GPS and INS data for estimating its position and adopts DWT (Discrete Wavelet Transform) de-noising filter and UKF (Unscented KALMAN Filter) elaborating the position estimation. The beacon system aims at estimating the precise position of underwater vehicle by using USBL to receive the tracking signals. The most important one for the precise position estimation of underwater vehicle is estimating the position of the beacon system precisely. Since the beacon is on the sea-waves, the received GPS signals are noisy and unstable most of times. Therefore, the INS data (gyroscope sensor, accelerometer, magnetic compass) are obtained at the beacon on the sea-surface to compensate for the inaccuracy of the GPS data. The noises in the acceleration data from INS data are reduced by using DWT de-noising filter in this research. Finally the UKF localization system is proposed in this paper and the system performance is verified by real experiments.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.48
no.6
/
pp.82-90
/
2011
This paper proposes an advanced outdoor localization algorithm of a GPS(global positioning system)-INS(inertial navigation system) integration system. In order to reduce noise from the internal INS sensors, discrete wavelet transform and variable threshold method are utilized. The UPF (unscented particle filter) combines GPS information and INS signals to implement precise outdoor localization algorithm and to reduce noise caused by the acceleration, deceleration, and unexpected slips. The conventional de-noising method is mainly carried out using a low pass filter and a high pass filter which essentially result in signal distortions. This newly proposed system utilizes the vibration information of actuator according to fluctuations of the velocity to minimize signal distortions. The UPF also resolves non-linearities of the actuator and non-normal distributions of noises. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.
Journal of Institute of Control, Robotics and Systems
/
v.20
no.12
/
pp.1284-1289
/
2014
In this Paper, outdoor position estimation system was implemented using GPS (Global Positioning System) and INS (Inertial Navigation System). GPS position information has lots of errors by interference from obstacles and weather, the surrounding environment. To reduce these errors, multiple GPS system is used. Also, the Discrete Wavelet Transforms was applied to INS data for compensation of its error. In this paper, position estimation of the mobile robot in the straight line is conducted by EKF (Extended Kalman Filter). However, curve running position estimation is less accurate than straight line due to phase change in rotation. The curve is recognized through the rate of change in heading angle and the position estimation precision of the initial curve was improved by UPF (Unscented Particle Filter). In the case of UPF, if the number of particle is so many that big memory gets size is needed and processing speed becomes late. So, it only used the position estimation in the initial curve. Thereafter, the position of mobile robot in curve is estimated through switching from UPF to EKF again. Through the experiments, we verify the superiority of the system and make a conclusion.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.