• 제목/요약/키워드: unscented filter

Search Result 138, Processing Time 0.032 seconds

Parallel Reduced-Order Square-Root Unscented Kalman Filter for State Estimation of Sensorless Permanent-Magnet Synchronous Motor (센서리스 영구자석 동기전동기의 상태 추정을 위한 병렬 축소 차수 제곱근 무향 칼만 필터)

  • Moon, Cheol;Kwon, Young-Ahn
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1019-1025
    • /
    • 2016
  • This paper proposes a parallel reduced-order square-root unscented Kalman filter for state estimation of a sensorless permanent-magnet synchronous motor. The appearance of an unscented Kalman filter is caused by the linearization process error between a real system and classical Kalman model. The unscented transformation can make a more accurate Kalman model. However, the complexity is its main drawback. This paper investigates the design and implementation of the proposed filter with Potter and Carlson square-root form. The proposed parallel reduced-order square-root unscented Kalman filter reduces memory and code size, and improves numerical computation. And the performance is not significantly different from the unscented Kalman filter. The experimentation is performed for the verification of the proposed filter.

Direct tracking of noncircular sources for multiple arrays via improved unscented particle filter method

  • Yang Qian;Xinlei Shi;Haowei Zeng;Mushtaq Ahmad
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.394-403
    • /
    • 2023
  • Direct tracking problem of moving noncircular sources for multiple arrays is investigated in this study. Here, we propose an improved unscented particle filter (I-UPF) direct tracking method, which combines system proportional symmetry unscented particle filter and Markov Chain Monte Carlo (MCMC) algorithm. Noncircular sources can extend the dimension of sources matrix, and the direct tracking accuracy is improved. This method uses multiple arrays to receive sources. Firstly, set up a direct tracking model through consecutive time and Doppler information. Subsequently, based on the improved unscented particle filter algorithm, the proposed tracking model is to improve the direct tracking accuracy and reduce computational complexity. Simulation results show that the proposed improved unscented particle filter algorithm for noncircular sources has enhanced tracking accuracy than Markov Chain Monte Carlo unscented particle filter algorithm, Markov Chain Monte Carlo extended Kalman particle filter, and two-step tracking method.

Study on Nonlinear Filter Using Unscented Transformation Update (무향변환을 이용한 비선형 필터에 대한 연구)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • The optimal estimation of a general continuous-discrete system can be achieved through the solution of the Fokker-Planck equation and the Bayesian update. Due the high nonlinearity of the equation of motion of the system and the measurement model, it is necessary to linearize the both equation. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the unscented transformation update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the unscented transformation update mechanism. This filter based on the Direct Quadrature Moment of Method(DQMOM) and the unscented transformation update is applied to the bearing only target tracking problem. The proposed filter can still provide more accurate estimation of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the proposed filter based on the DQMOM and the unscented transformation update make it a promising alternative to the extended Kalman filter.

Sensorless Speed Control of Permanent Magnet Synchronous Motor by Unscented Kalman Filter using Various Scaling Parameters

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.347-352
    • /
    • 2016
  • This paper investigates the application, design and implementation of unscented Kalman filter observer using the various scaling parameters for the sensorless speed control of a permanent magnet synchronous motor. The principles of unscented transformation and unscented Kalman filter are examined and their applications are explained. Typically the mapping transformation process is divided into two types, namely the basic unscented transformation and the general unscented transformation by virtue of the scaling parameter value. And resultantly, the number of sampling points, weights, code configuration and computation time are different. But there is no little information on the scaling parameter value or how this value influences the system performance. To analyze the unscented transformation with the various scaling parameters in this study, the experimental results under a wide range of operation condition have been demonstrated.

Reduced-Order Unscented Kalman Filter for Sensorless Control of Permanent-Magnet Synchronous Motor

  • Moon, Cheol;Kwon, Young Ahn
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.683-688
    • /
    • 2017
  • The unscented Kalman filter features a direct transforming process involving unscented transformation for removing the linearization process error that may occur in the extended Kalman filter. This paper proposes a reduced-order unscented Kalman filter for the sensorless control of a permanent magnet synchronous motor. The proposed method can reduce the computational load without degrading the accuracy compared to the conventional Kalman filters. Moreover, the proposed method can directly estimate the electrical rotor position and speed without a back-electromotive force. The proposed Kalman filter for the sensorless control of a permanent magnet synchronous motor is verified through the simulation and experimentation. The performance of the proposed method is evaluated over a wide range of operations, such as forward and reverse rotations in low and high speeds including the detuning parameters.

Performance Improvement in GPS Attitude Determination Using Unscented Kalman Filters (GPS를 이용한 자세결정에서 Unscented Kalman Filter를 이용한 성능 향상)

  • Chun Sebum;Lee Eunsung;Kang Taesam;Jee Gyu-In;Lee Young Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.621-626
    • /
    • 2005
  • With precise GPS carrier positioning result, we can get attitude information if GPS antenna has adequate attaching position on the vehicle. In this case, baseline length information can be bandied as an additional measurement or constraint. In this paper, we have proposed a method to improve the attitude accuracy. To overcome nonlinearity of baseline observation model, we analyze attitude estimation result using existing estimation method like a least square method and Kalman filter, and apply a new nonlinear estimation method an unscented Kalman filter Finally we confirm the improvement of attitude estimation result in the case of appling the unscented Kalman filter.

Indoor Localization Using Unscented Kalman/FIR Hybrid Filter (언센티드 칼만/FIR 하이브리드 필터를 이용한 실내 위치 추정)

  • Pak, Jung Min;Ahn, Choon Ki;Lim, Myo Taeg;Song, Moon Kyou
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1057-1063
    • /
    • 2015
  • This paper proposes a new nonlinear filtering algorithm that combines the unscented Kalman filter (UKF) and the finite impulse response (FIR) filter. The proposed filter is called the unscented Kalman/FIR hybrid filter (UKFHF). In the UKFHF algorithm, the UKF is used as the main filter, which produces state estimates under ideal conditions. When failures of the UKF are detected, the FIR filter is operated. Using the output of the FIR filter, the UKF is reset and rebooted. In this way, the UKFHF recovers from failures. The proposed UKFHF is applied to indoor human localization using wireless sensor networks. Through simulations, the performance of the UKFHF is demonstrated in comparison with that of the UKF.

Position Estimation of Chirp Spread Spectrum Node based on Unscented Kalman Filter (Unscented 칼만 필터 기반의 chirp spread spectrum 노드 위치 추정)

  • Cho, Hyeon-Woo;Ban, Sung-Jun;Lee, Young-Hun;Joen, Young-Ju;Kim, Sang-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.187-189
    • /
    • 2009
  • Position estimation in indoor is significant problem, because GPS which is usually used for outdoor positioning cannot be utilized to indoor positioning. Sensor network can be a solution for the positioning. Recently, chirp spread spectrum(CSS) specified in IEEE 802.15.4a provides an ability of ranging. Based on the results of the ranging, a position of a CSS node can be calculated by using trilateration. In this case, Kalman filter can be applied to the trilateration because of the measurement noise. In this paper, we apply the unscented Kalman filter for the trilateration. The trilateration can be represented to a nonlinear state space equation, and the unscented Kalman filter is suitable for nonlinear state space equation. Through the experimental results. we show the accuracy of the estimated position.

  • PDF

Spacecraft Attitude Estimation by Unscented Filtering (고른 필터를 이용한 인공위성의 자세 추정)

  • Leeghim, Hen-Zeh;Choi, Yoon-Hyuk;Bang, Hyo-Choong;Park, Jong-Oh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.865-872
    • /
    • 2008
  • Spacecraft attitude estimation using the nonlinear unscented filter is addressed to fully utilize capabilities of the unscented transformation. To release significant computational load, an efficient technique is proposed by reasonably removing correlation between random variables. This modification introduces considerable reduction of sigma points and computational burden in matrix square-root calculation for most nonlinear systems. Unscented filter technique makes use of a set of sample points to predict mean and covariance. The general QUEST(QUaternion ESTimator) algorithm preserves explicitly the quaternion normalization, whereas extended Kalman filter(EKF) implicitly obeys the constraint. For spacecraft attitude estimation based on quaternion, an approach to computing quaternion means from sampled quaternions with guarantee of the quaternion norm constraint is introduced applying a constrained optimization technique. Finally, the performance of the new approach is demonstrated using a star tracker and rate-gyro measurements.

SOC Estimation of Flooded Lead Acid Battery Using an Adaptive Unscented Kalman Filter (적응형 Unscented 칼만필터를 이용한 플러디드 납축전지의 SOC 추정)

  • Khan, Abdul Basit;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.59-60
    • /
    • 2016
  • Flooded lead acid batteries are still very popular in the industry because of their low cost as compared to their counterparts. State of Charge (SOC) estimation is of great importance for a flooded lead acid battery to ensure its safe working and to prevent it from over-charging or over-discharging. Different types of Kalman Filters are widely used for SOC estimation of batteries. The values of process and measurement noise covariance of a filter are usually calculated by trial and error method and taken as constant throughout the estimation process. While in practical cases, these values can vary as well depending upon the dynamics of the system. Therefore an Adaptive Unscented Kalman Filter (AUKF) is introduced in which the values of the process and measurement noise covariance are updated in each iteration based on the residual system error. A comparison of traditional and Adaptive Unscented Kalman Filter is presented in the paper. The results show that SOC estimation error by the proposed method is further reduced by 3 % as compared to traditional Unscented Kalman Filter.

  • PDF