• Title/Summary/Keyword: unsaturated sand

Search Result 81, Processing Time 0.028 seconds

Unsaturated Shear Strength Characteristics of Nakdong River Silty Sand (낙동강 실트질 모래의 불포화 전단강도 특성)

  • Jin, Guang-Ri;Shin, Ji-Seop;Park, Sung-Sik;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.47-56
    • /
    • 2013
  • There are many technical problems, which can not be resolved by the concept of saturated soil mechanics. Unsaturated soils show an apparent cohesion due to negative pore pressure and relatively lower permeability due to entrapped air compared to saturated soils. The determination of engineering properties of soils with various moisture content is very important to evaluate shear strength and stability of natural and engineered soils. So various researches should be made on unsaturated soils. Especially, sandy soils are widely distributed near Nakdong river, one of the four rivers where Restoration Projects were carried out. Many structures such as dams, flood control facilities, detention facilities and reservoirs have been built in this area. In this study, unsaturated triaxial compressive tests were conducted on sands or silty sands at Nakdong river in order to provide their fundamental characteristics for design and construction of geotechnical structures. As a result of the tests, the maximum deviator stress increased as the confining stress and matric suction increased. The cohesion increased non-linearly as the matric suction increased, but the angle of internal friction was marginally changed.

Retardation of Mobility of Gaseous VOCs in the Unsaturated Zone (불포화대중 휘발성 유기화합물 가스의 이동지연현상)

  • 이창수;배우근
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 1999
  • This study is on the mathematical modeling and its verification of the retardation phenomenon of gas migration in an unsaturated zone of very little moisture content The adsorption of VOCs onto the surface of the dry medium was taken into account, which has not been usually considered in the conventional models. The trichloroethylene(TCE) gas migration predicted from the mathematical model developed in this study fits the experimental results obtained from a dry glass-bead column and a dry silica sand column very well The model developed in this study gave much better prediction than did a coventional model.

  • PDF

Effect of degree of compaction & confining stress on instability behavior of unsaturated soil

  • Rasool, Ali Murtaza
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.219-231
    • /
    • 2022
  • Geotechnical materials such as silt, fine sand, or coarse granular soils may be unstable under undrained shearing or during rainfall infiltration starting an unsaturated state. Some researches are available describing the instability of coarse granular soils in drained or undrained conditions. However, there is a need to investigate the instability mechanism of unsaturated silty soil considering the effect of degree of compaction and net confining stress under partially and fully drained conditions. The specimens in the current study are compacted at 65%, 75%, & 85% degree of compaction, confined at pressures of 60, 80 & 120 kPa, and tested in partially and fully drained conditions. The tests have been performed in two steps. In Step-I, the specimens were sheared in constant water content conditions (a type of partially drained test) to the maximum shear stress. In Step-II, shearing was carried in constant suction conditions (a type of fully undrained test) by keeping shear stress constant. At the start of Step-II, PWP was increased in steps to decrease matric suction (which was then kept constant) and start water infiltration. The test results showed that soil instability is affected much by variation in the degree of compaction and confining stresses. It is also observed that loose and medium dense soils are vulnerable to pre-failure instability i.e., instability occurs before reaching the failure state, whereas, instability in dense soils instigates together with the failure i.e., failure line (FL) and instability line (IL) are found to be unique.

Simulations of the Flow and Distribution of LNAPL in Heterogeneous Porous Media under Water Table Fluctuation Condition (불균질한 다공성 매질에서의 지하수위 변동을 고려한 저밀도 비수용성유체(LNAPL)의 흐름 모의)

  • 천정용;이진용;이강근
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.51-65
    • /
    • 2003
  • A series of numerical simulations were carried out using STOMP( Subsurface Transport over Multiple Phase) simulator. The flow and distribution of LNAPL were analyzed in homogeneous fine and coarse sand. Vertical movement of LNAPL is faster in the coarser sand. But the total volume of LNAPL retained in the unsaturated zone is larger in the finer sand. A fine layer in the coarse sand domain is also simulated. The results showed that the retained LNAPL volume and shape are highly influenced by the Position of the fine layer. Flow and distributions of LNAPL were simulated when there were heterogeneous lenses in the sand domain. Water table fluctuation was also considered. In these cases, it was found that the heterogeneous lens was a barrier to LNAPL flow, and water table fluctuation stimulated the downward movement of retained LNAPL. The LNAPL flow and distribution observed in these numerical experiments show that in the subsurface environment, the behaviors of LNAPL highly depend on heterogeneities of unsaturated zone and the dynamic hydrogeologic condition such as water table fluctuation. These results can explain some of the complexity of LNAPL flow and distribution Patterns in LNAPL contaminated field sites.

PAHs 오염 토양내 오존이동특성;함수율과 수분과 토양 유기물의 영향

  • 배기진;정해룡;최희철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.140-143
    • /
    • 2001
  • The packed column experiments were conducted with commercial Jumunjin sand(SOM content : 0.01 %) and a field soil(SOM content : 0.08 %) in order to understand the effects of water content and soil organic matter(SOM) on the transport of gaseous ozone in unsaturated soil contaminated with phenanthrene. Water content and SOM content were artificially controlled. As water content increased, earlier breakthrough was observed in the beginning of BTC of ozone, because direct contact of gaseous ozone with SOM and phenanthrene was prevented by water film formed between soil particles and gaseous ozone. The total removal of phenanthrene in Jumunjin sand was not affected by water content which was more than 99% at different water content(4.4, 8, 17.3%). However, the removal in field soil at water content 6.5 % and 20 % was 98% and 80 %.

  • PDF

Effect of pH and Iron/Manganese Ion on TiO2 Mediated Photocatalytic Inactivation of Index Microorganisms (LNAPL을 이용한 지중 산소전달 향상: (I) Abiotic Condition)

  • Ha, Jeong-Hyub;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.307-311
    • /
    • 2004
  • The objective of this work is to evaluate the hypothesis that a good technique for supplying oxygen to the saturated zone in the presence of light nonaqueous phase liquid (LNAPL) pool contamination at the water table is to pass air through the unsaturated zone above the pool. This hypothesis was evaluated in experimental studies performed using a bench-scale, sand-tank reactor, Steady-state abiotic experiments in the sand-tank reactor with air flowing through the reactor headspace demonstrated that oxygen supply through the water table interface into the saturated zone was enhanced when an LNAPL (dodecane) pool was present at the water table. These experimental results confirmed the hypothesis that an LNAPL pool can serve as a high concentration oxygen source to the oxygen-limited area beneath the pool and, as a result, enhance the in situ biodegradation rate.

Tension infiltrometer를 이용한 토양의 침투특성 분석

  • 하규철;전철민;김재곤
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.362-365
    • /
    • 2004
  • 토양오염의 확산과정중의 서로 다른 지질적 기반위에 놓인 토양에 대한 침투특성과 4단계 이상의 장력을 적용하여 침투율을 산정하였다. 장력과 침투율과는 지수함수로 비선형 회귀시켜서 산정하였으며, 단지 몇단계의 장력만으로 구하여진 값보다 더 많은 불포화대수리특성과 신뢰성있는 포화수리전도도를 제공할 수 있을 것이다. 구하여진 침투율은 토양분석결과를 비교했을 경우 점토함량이 적은 시료에서 적게나오는 경향이 있고, sand가 많은 토양의 경우 높게 산정되었다.

  • PDF

Effect of water content on near-pile silt deformation during pile driving using PIV technology

  • Jiang, Tong;Wang, Lijin;Zhang, Junran;Jia, Hang;Pan, Jishun
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.139-149
    • /
    • 2020
  • Piles are widely used in structural foundations of engineering projects. However, the deformation of the soil around the pile caused by driving process has an adverse effect on adjacent existing underground buildings. Many previous studies have addressed related problems in sand and saturated clay. Nevertheless, the failure mechanism of pile driving in unsaturated soil remains scarcely reported, and this issue needs to be studied. In this study, a modeling test system based on particle image velocimetry (PIV) was developed for studying deformation characteristics of pile driving in unsaturated silt with different water contents. Meanwhile, a series of direct shear tests and soil-water characteristic curve (SWCC) tests also were conducted. The test results show that the displacement field shows an apparent squeezing effect under the pile end. The installation pressure and displacement field characteristics are sensitive to the water content. The installation pressure is the largest and the total displacement field is the smallest, for specimens compacted at water content of 11.5%. These observations can be reasonably interpreted according to the relevant unsaturated silt theory derived from SWCC tests and direct shear tests. The variation characteristics of the soil displacement field reflect the macroscopic mechanical properties of the soil around the pile.

Unsaturated Soil-Water Characteristics Curve with Silt Contents for Nak-Dong River Sand (실트함유율에 따른 낙동강 모래의 불포화 함수특성곡선)

  • Moon, Hongduk;Kim, Daeman
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.2
    • /
    • pp.23-33
    • /
    • 2011
  • In this paper, we got soil-water characteristic curve(SWCC) of Nak-Dong River's sand respectively as relative density 40%, 60%, 80% and content of silt 0%, 10%, 20%, 30%. As a result, the more the sand densify in the same silt content and the more the sand has silt in the same relative density, the change of volume water content was decreased. we have known effect of silt contents for SWCC and verified existing empirical formula of SWCC. As experiment results of soil-water characteristic curves compared to the empirical solutions, the results of van Genuchten(1980) and Fredlund & Xing(1994) were well-matched showing S type curves with experiment results. Especially the empirical solution of Fredlund & Xing showed almost same results of the coefficient of correlation($R^2$) equal to 0.99.

Measurement of Gas-Accessible PCE Saturation in Unsaturated Soil using Gas Tracers during the Removal of PCE (토양 내 PCE 제거과정에서 가스 분배추적자기법을 이용한 공기노출 PCE의 잔류량 검출)

  • Kim, Heon-Ki;Kwon, Han-Joon;Song, Young-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.5
    • /
    • pp.42-52
    • /
    • 2011
  • In this laboratory study, the changes in gas-exposed perchloroethene (PCE) saturation in sand during a PCE removal process were measured using gaseous tracers. The flux of fresh air through a glass column packed with PCEcontaminated, partially water-saturated sand drove the removal of PCE from the column. During the removal of PCE, methane, n-pentane, difluoromethane and chloroform were used as the non-reactive, PCE-partitioning, water-partitioning, and PCE and water-partitioning tracers, respectively. N-pentane was used to detect the PCE fraction exposed to the mobile gas. At water saturation of 0.11, only 65% of the PCE was found to be exposed to the mobile gas prior to the removal of PCE, as calculated from the n-pentane retardation factor. More PCE than that detected by n-pentane was depleted from the column due to volatilization through the aqueous phase. However, the ratio of gas-exposed to total PCE decreased on the removal of PCE, implying gas-exposed PCE was preferentially removed by vaporization. These results suggest that the water-insoluble, PCE-partitioning tracer (n-pentane in this study), along with other tracers, can be used to investigate the changes in fluid (including nonaqueous phase liquid) saturation and the removal mechanism during the remediation process.