• 제목/요약/키워드: unreinforced masonry structures

검색결과 41건 처리시간 0.018초

RC 경계골조를 설치한 신축 비보강 조적벽체의 내진성능 평가 (Seismic Performance Evaluation of Unreinforced Masonry Walls with Additional Boundary RC Frames)

  • 유영찬;김민선;이현지
    • 대한건축학회논문집:구조계
    • /
    • 제34권11호
    • /
    • pp.27-35
    • /
    • 2018
  • The purpose of this study is to examine the effects of boundary RC frame(composed of one tie-beam and two tie-columns) on seismic performance of unreinforced masonry walls to suggest alternative way for seismic design of unreinforced masonry wall structures. Two test specimens are prepared, one is a typical unreinforced masonry wall and another is alternative unreinforced masonry wall with additional boundary RC frame. The structural experiments were carried out to evaluate the difference of seismic resistance performance between two test specimens with or without the boundary RC frames. From the test results, it was found that the failure mode of unreinforced masonry wall fundamentally changed from 'brittle' to 'ductile' by the installing of boundary RC frames. And, the maximum load and energy dissipation capacity of the test specimen with boundary RC frame was increased about 1.6~1.7 and 2~3 times respectively compared with a typical unreinforced masonry wall specimen.

Analysis of the in-plane shear behaviour of FRP reinforced hollow brick masonry walls

  • Gabor, A.;Ferrier, E.;Jacquelin, E.;Hamelin, P.
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.237-260
    • /
    • 2005
  • This paper presents an experimental as well as a numerical analysis of the in-plane shear behaviour of hollow, $870{\times}840{\times}100mm$ masonry walls, externally strengthened with FRP composites. The experimental approach is devoted to the evaluation of the effectiveness of different composite strengthening configurations and the methodology consists in the diagonal compression of masonry walls. The numerical study assesses the stress and strain state distribution in the unreinforced and strengthened panels using a commercial finite element code. The effect of FRP reinforcement on the masonry behaviour and the capability of modelling to forecast a representative failure mode of the unreinforced and reinforced masonry walls is investigated.

Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania

  • Bilgin, Huseyin;Huta, Ergys
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.599-614
    • /
    • 2018
  • This study focuses on the earthquake performance of two URM buildings having typical architectural configurations common for residential use constructed per pre-modern code in Albania. Both buildings are unreinforced clay brick masonry structures constructed in 1960 and 1984, respectively. The first building is a three-storey unreinforced one with masonry walls. The second one is confined masonry rising on five floors. Mechanical characteristics of masonry walls were determined based on experimental tests conducted according to ASTM C67-09 regulations. A global numerical model of the buildings was built, and masonry material was simulated as nonlinear. Pushover analyses are carried out to obtain capacity curves. Displacement demands were calculated according to Eurocode 8 and FEMA440 guidelines. Causes of building failures in recent earthquakes were examined using the results of this study. The results of the study showed that the URM building displays higher displacement and shear force demands that can be directly related to damage or collapse. On the other hand, the confined one exhibits relatively higher seismic resistance by indicating moderate damage. Moreover, effects of demand estimation approaches on performance assessment of URM buildings were compared. Deficiencies and possible solutions to improve the capacity of such buildings were discussed.

Analysis of unreinforced masonry (URM) walls and evaluation of retrofitting schemes for URM structures

  • Mehta, Sanjay;Saadeghvaziri, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제6권7호
    • /
    • pp.801-815
    • /
    • 1998
  • An overview of an analytical model to predict mortar joint failure in unreinforced masonry (URM) structures is presented. The validity of the model is established by comparison with experimental results at element level as well as structure level. This model is then used to study the behavior of URM walls and two commonly used retrofitting schemes. Finally, effectiveness of the two retrofitting schemes in increasing strength and stiffness of existing URM walls is discussed.

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

Effect of roof diaphragm on masonry structures under dynamic loading

  • Sathiparan, Navaratnarajah
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.351-366
    • /
    • 2016
  • The structural collapse of masonry structure under dynamic loading displays many possible failure mechanisms often related to interaction between structural components. Roof collapse is one of the major damage mechanisms observed in masonry structures during an earthquake. Better connection between the roof diaphragm and walls may be preventing roof collapse, but it can affect other failure mechanisms. In spite of this fact, less attention has been paid to the influence of the roof diaphragm effect on masonry structures and little research has been implemented in this field. In the present study, the roof diaphragm effect on the unreinforced masonry structure under dynamic loading has been experimentally investigated. Three one-quarter scale one-story adobe masonry house models with different roof conditions have been tested by subjecting them to sinusoid loading on a shaking table simulator. Phenomena such as failure pattern, dynamic performance of masonry structure were examined.

국내 조적조 건물의 내진성능평가 및 지진피해율 상정 (Evaluation of Seismic Capacity and Estimation of Earthquake Damage for Existing Unreinforced Masonry Building in Korea)

  • 강대언;이원호
    • 콘크리트학회논문집
    • /
    • 제18권4호
    • /
    • pp.535-542
    • /
    • 2006
  • 본 연구에서는 향후 국내의 실정에 맞는 조적조 건물의 내진성능 평가방법의 개발에 기초적인 자료제공을 목적으로 지진에 무방비 상태로 노출된 조적조 건축물 특히 서울시내 50개동의 조적조 건물들을 대상으로 기존 건축물의 구조내진 성능 평가에 관한 기술지침(안)의 방법에 따라 건물의 내진성능을 평가하고 구조내진지표의 분포특성 및 지진피해율을 통계 확률론에 입각하여 검토한 결과, 다음과 같은 결론을 얻었다. 그, 결과, 국내의 현존 조적조 건물의 경년지표(T)를 1에서 0.7사이로 가정하고, 평균전단 응력도를 0.2MPa로 가정 시 표준정규분포로 근사가 가능하다는 것을 알았으며, 조사 대상건물은 경년지표의 변화에 따라 국내 상정 입력지진가속도 레벨에서도 $8{\sim}48%$정도의 내진보강이 필요한 것으로 나타났다. 또한, 국내 상정 입력지진가속도 레벨인 0.12g에 대해서 $11.5{\sim}37.4%$정도의 지진피해율이 상정되었으며 일본의 대표적인 피해지진레벨(0.23g) 뿐만 아니라 중규모의 지진에서도 큰 피해를 받을 것으로 사료된다. 따라서 국내실정에 적합한 내진진단법, 이를 근거로 한 보강건물의 합리적인 선정방법 및 효과적인 내진보강공법이 개발이 시급하다고 판단된다.

A Simple Procedure of Seismic Performance Evaluation for Unreinforced Masonry Buildings in Korea

  • Kim, Taewan
    • Architectural research
    • /
    • 제15권3호
    • /
    • pp.159-166
    • /
    • 2013
  • This study was aimed at analyzing the three-step seismic performance evaluation procedure of Korea Infrastructure Safety Cooperation and proposing a new procedure suitable for unreinforced masonry buildings in Korea. For the study, it was investigated the performance evaluation results of five example URM buildings. First of all, it was found that the performance evaluation procedure for the URM buildings should be different from that for the other structural systems. As a result, a simple procedure of seismic performance evaluation was proposed, which includes elimination of elastic and inelastic push-over analysis and reduction of performance levels and evaluation steps. With the simple procedure, the URM buildings could be evaluated more easily than the other structures. It would be expected that the procedure can provide structural engineers with a simple and easy way to evaluate the seismic performance of the Korean URM buildings. Nevertheless, the procedure must be revised continuously by reflecting new research products for the URM buildings in Korea.

Shear behaviour of Autoclaved Aerated Concrete (AAC) masonry walls with and without openings strengthened with welded wire mesh

  • Wanraplang Warlarpih;Comingstarful Marthong
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.487-498
    • /
    • 2023
  • Unreinforced masonry (URM) buildings are extensively adopted in many of the growing nations, particularly in India. Window or door openings are required for architectural or functional reasons, which pose a threat to the building's safety. The past earthquakes have shown that the seismic capability of these structures was very weak. Strengthening these unreinforced masonry walls using welded wire mesh (WWM) is one of the most commonly and economical methods. The present experimental study investigates the impact of openings on the shear behaviour of URM walls and the effectiveness of WWM in enhancing the shear performance of masonry wall. In the experimental program 16 specimens were cast, 8 unstrengthen and 8 strengthened specimens, under 8 unstrengthen and strengthened specimens, every 2 specimens had 0%, 5%, 10%, and 15% openings and all these walls were tested under diagonal compression. The results show that the shear carrying capacity reduces as the opening percentage increases. However, strengthening the URM specimens using WWM significantly improves the peak load, shear strength, ductility, stiffness, and energy dissipation. Furthermore, the strengthening of the URM walls using WWM compensated the loss of wall capacity caused by the presence of the openings.

비보강 조적식 구조의 형상에 따른 내진성능 평가 해석 (Effect of Physical Shape on Seismic Performance of URM Structures)

  • 박주남
    • 한국지진공학회논문집
    • /
    • 제20권5호
    • /
    • pp.277-283
    • /
    • 2016
  • Unreinforced masonry (URM) buildings are known to be highly vulnerable to seismic loadings. Although significant physical variation may exist for URM buildings that fall into a same structural category, a single set of fragility curves is typically used as a representation of the seismic vulnerability of the URM structures. This study investigates the effect of physical variation of URM structures on their seismic performance level. Variables that describe the physical variation of the structure are defined based on the inventory analysis. Seismic behavior of the structures is then monitored by changing the variables to investigate the effect of each variable. The analysis results show that among the variables considered the seismic performance of URM building depends on the variation of the width, the aspect ratio, and the number of story. The need for further research on the modeling of the connections between the walls and diaphragms and the torsional effect is also addressed.