• Title/Summary/Keyword: unreinforced concrete

Search Result 89, Processing Time 0.025 seconds

Application of Artificial Neural Networks to the prediction of out-of-plane response of infill walls subjected to shake table

  • Onat, Onur;Gul, Muhammet
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.521-535
    • /
    • 2018
  • The main purpose of this paper is to predict missing absolute out-of-plane displacements and failure limits of infill walls by artificial neural network (ANN) models. For this purpose, two shake table experiments are performed. These experiments are conducted on a 1:1 scale one-bay one-story reinforced concrete frame (RCF) with an infill wall. One of the experimental models is composed of unreinforced brick model (URB) enclosures with an RCF and other is composed of an infill wall with bed joint reinforcement (BJR) enclosures with an RCF. An artificial earthquake load is applied with four acceleration levels to the URB model and with five acceleration levels to the BJR model. After a certain acceleration level, the accelerometers are detached from the wall to prevent damage to them. The removal of these instruments results in missing data. The missing absolute maximum out-of-plane displacements are predicted with ANN models. Failure of the infill wall in the out-of-plane direction is also predicted at the 0.79 g acceleration level. An accuracy of 99% is obtained for the available data. In addition, a benchmark analysis with multiple regression is performed. This study validates that the ANN-based procedure estimates missing experimental data more accurately than multiple regression models.

Effect of Mechanical Restraint due to Steel Microfibers on Alkali-Silica Reaction in Mortars (미세 강섬유의 구속력이 모르타르의 알칼리-실리카 반응에 미치는 영향)

  • Yi, Chong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.577-584
    • /
    • 2007
  • The effect of steel microfibers (SMF) on alkali-silica reaction (ASR) was investigated using two types of reactive aggregates, crushed opal and a pyrex rod of constant diameter. Cracks are less visible in the SMF mortars compared with the unreinforced mortars. Due to crack growth resistance behavior in SMF mortar specimens, the strength loss is eliminated and the ASR products remained well confined within the ASR site. The expansion and the ASR products were characterized by microprobe analysis and inductively coupled plasma (ICP) spectroscopy. The confinement due to SMF resulted in a higher Na and Si ion concentration of the ASR liquid extracted from the reaction site. The higher concentration reduced the ASR rate and resulted in a lower reactivity of the reactive pyrex rods in SMF mortars.

Strengthening of shear resistance of masonry walls (조적벽체의 전단강도 향상 방안에 관한 연구)

  • Kang, Sung-Hun;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.193-196
    • /
    • 2008
  • This paper presents an experimental study to investigate enhanced performance of the masonry walls strengthened in shear and ductility using honeycomb steel mesh. The performance of masonry walls strengthened with steel mesh will compare with unreinforced masonry walls to show the performance of reinforced masonry walls. According to the experiment, it is expected that this system is effective to enhance the shear strength and ductility of the masonry walls.

  • PDF

Monotonic Loading Tests of RC Beam-Column Subassemblage Strengthened to Prevent Progressive Collapse

  • Kim, Jinkoo;Choi, Hyunhoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.401-413
    • /
    • 2015
  • In this study the progressive collapse resisting capacity of a RC beam-column subassemblage with and without strengthening was investigated. Total of five specimens were tested; two unreinforced specimens, the one designed as gravity load-resisting system and the other as seismic load-resisting system, and three specimens reinforced with: (i) bonded strand, (ii) unbonded strand, and (iii) side steel plates with stud bolts. The two-span subassemblages were designed as part of an eight-story RC building. Monotonically increasing load was applied at the middle column of the specimens and the force-displacement relationships were plotted. It was observed that the gravity load-resisting specimen failed by fractures of re-bars in the beams. In the other specimens no failure was observed until the maximum displacement capacity of the actuator was reached. Highest strength was observed in the structure with unbonded strand. The test result of the specimen with side steel plates in beam-column joints showed that the force-displacement curve increased without fracture of re-bars. Based on the test results it was concluded that the progressive collapse resisting capacity of a RC frame could be significantly enhanced using unbonded strands or side plates with stud bolts.

Effective Punching Shear and Moment Capacity of Flat Plate-Column Connection with Shear Reinforcements for Lateral Loading

  • Song, Jin-Kyu;Kim, Ju-Bum;Song, Ho-Bum;Song, Jeong-Won
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.19-29
    • /
    • 2012
  • In this study, three isolated interior flat slab-column connections that include three types of shear reinforcement details; stirrup, shear stud and shear band were tested under reversed cyclic lateral loading to observe the capacity of slab-column connections. These reinforced joints are 2/3 scale miniatures designed to have identical punching capacities. These experiments showed that the flexural failure mode appears in most specimens while the maximum unbalanced moment and energy absorbing capacity increases effectively, with the exception of an unreinforced standard specimen. Finally, the results of the experiments, as wel l as those of experiments previously carried out by researchers, are applied to the eccentricity shear stress model presented in ACI 318-08. The failure mode is therefore defined in this study by considering the upper limits for punching shear and unbalanced moment. In addition, an intensity factor is proposed for effective widths of slabs that carry an unbalanced moment delivered by bending.

Seismic Performance of RC Columns Confined by Outside Lateral Reinforcement (외측 횡보강재로 구속된 철근콘크리트 기둥의 내진성능)

  • Lee, Do Hyung;Oh, Jangkyun;Yu, Wan Dong;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.189-196
    • /
    • 2012
  • In this paper, reinforced concrete columns test has been conducted under repeated lateral load reversals. The test columns have been reinforced with outside lateral confinement members in addition to transverse reinforcements. For this purpose, a strainless steel and a GFRP have been employed for the lateral confinement members. Primary parameters are types, thickness and spacing of the lateral confinement members. Experimental results reveal that columns reinforced with lateral confinement members exhibit improved ductility and energy dissipation capacity in comparison with those unreinforced. It is thus concluded that the present approach can be of a useful scheme for the seismic retrofitting of reinforced concrete columns.

Experimental Study on the Material Properties of Unreinforced Masonry (비보강 조적조의 재료특성 평가에 관한 실험연구)

  • 박진호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.178-185
    • /
    • 2000
  • A set of tests were accomplished in order to get better insight of the basic material properties of masonry made of normal concrete brick and different type of mortar compositions. Three different types of test were performed. Masonry unit and prism were tested by compressive strength test, Masonry wallets were tested by compressive strength test. Masonry wallets were tested in diagonally under tension. A significant influence of different mortar compositions on compression strength of masonry prism was observed, The tests have shown that for diagonal compression three different mode of failure were possible : tension crack along the loaded diagonal sliding along a mortar joint and combined sliding and diagonal crack according to the adhesive strength of a mortar.

  • PDF

A simplified evaluation method of skeleton curve for RC frame with URM infill

  • Jin, Kiwoong;Choi, Ho
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, a simplified evaluation method of the skeleton curve for reinforced concrete (RC) frame with unreinforced masonry (URM) infill is proposed in a practical form, based on the previous studies. The backbone curve for RC boundary frame was modeled by a tri-linear envelope with cracking and yielding points. On the other hand, that of URM infill was modeled by representative characteristic points of cracking, maximum, and residual strength; also, the interaction effect between RC boundary frame and the infill was taken into account. The overall force-displacement envelopes by the sum of RC boundary frame and URM infill, where the backbone curves of the infill from other studies were also considered, were then compared with the previous experimental results. The simplified estimation results from this study were found to almost approximate the overall experimental results with conservative evaluations, and they showed much better agreement than the cases employing the infill envelopes from other studies.

Performance evaluation of a seismic retrofitted R.C. precast industrial building

  • Nastri, Elide;Vergato, Mariacristina;Latour, Massimo
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.13-21
    • /
    • 2017
  • Recent seismic events occurred in Italy (Emilia-Romagna 2012, Abruzzo 2009) and worldwide (New Zealand 2010 and 2011) highlighted some of the weaknesses of precast concrete industrial buildings, especially those related to the connecting systems traditionally employed to fasten the cladding panels to the internal framing. In fact, one of the most commons fails it is possible to observe in such structural typologies is related to the out-of-plane collapse of the external walls due to the unsatisfactory behaviour of the connectors used to join the panels to the perimeter beams. In this work, the strengthening of a traditional industrial building, assumed as a case study, made by precast reinforced concrete is proposed by the adoption of a dual system allowing the reinforcement of the structure by acting both internally; by pendular columns and, externally, on the walls. In particular, traditional connections at the top of the walls are substituted by devices able to work as a slider with vertical axis while, the bottom of the walls is equipped with two or more hysteretic dampers working on the uplift of the cladding panels occurring under seismic actions. By means of this approach, the structure is stiffened; obtaining a reduction of the lateral drifts under serviceability limit states. In addition, its seismic behaviour is improved due to the additional source of energy dissipation represented by the dampers located at the base of the walls. The effectiveness of the suggested retrofitting approach has been checked by comparing the performance of the retrofitted structure with those of the structure unreinforced by means of both pushover and Incremental Dynamic Analyses (IDA) in terms of behaviour factor, assumed as a measure of the ductility capacity of the structure.

Evaluation of Fire-induced Damage to Structural Members in Tunnels (화재에 의한 터널구조물 시공재료의 손상 평가)

  • Chang, Soo-Ho;Choi, Soon-Wook;Kwon, Jong-Wook;Bae, Gyu-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.219-228
    • /
    • 2006
  • In this study, a series of fire tests was carried out to evaluate fire-induced damage to structural members in tunnels. From the tests, the loss amount of concrete materials under the RWS scenario was slightly bigger than under the RABT fire scenario. Especially under the RWS fire scenario where the maximum temperature is over $1,200^{\circ}C$, the loss of concrete materials was mainly induced by melting. Generally, the loss of materials in reinforced concrete was slightly smaller than that in unreinforced concrete. Depending upon an applied fire scenario, fire-induced damage to shotcrete was quite different. From the realtime investigation of a specimen surface by a digital camcorder, it was proved that the material loss under the RABT fire scenario was mainly induced by spalling. However, it was also revealed that although fire-induced damage in the initial heating stage under the RWS was so close to that under the RABT, the material loss under the RWS at the later stage after 50 minutes elapsed since fire initiation was induced not by spalling but by melting.