• Title/Summary/Keyword: unmanned vehicle

Search Result 1,649, Processing Time 0.028 seconds

Ironbird Ground Test for Tilt Rotor Unmanned Aerial Vehicle

  • Hwang, Soo-Jung;Choi, Seong-Wook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.313-318
    • /
    • 2010
  • The power plant system of a tilt rotor unmanned aerial vehicle (UAV) was verified by the Ironbird ground test, which considerably reduces cost and risk during the developmental stages. The function and performance of the engine, drive line, nacelle conversion, and rotor systems were evaluated using a building block test approach. The Ironbird test concept facilitates the discovery of potential faults in earlier stages of the testing period. As a result, the developmental testing period could effectively be shortened. The measured test data acquired through a ground control and data acquisition system exhibited satisfactory results which meet the developmental specifications of a tilt rotor UAV.

Extended kalman filter design for autonomous navigation with GPS and INS sensor system fusion (GPS와 INS의 센서융합을 이용한 자율항법용 확장형 칼만필터 설계)

  • Yun, Duk-Sun;Yu, Hwan-Shin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.294-300
    • /
    • 2007
  • Autonomous unmanned vehicle is able to find the path and the way point by itself. For the more precise navigation performance, Extended kalman filter, which is integrated with inertial navigation system and global positioning system is proposed in this paper. Extended kalman filter's performance is evaluated by the simulation and applied to the unmanned vehicle. The test result shows the effectiveness of extended kalman filter for the navigation.

A Tracking Filter Design of the Radar Beacon System for Automatic Take-off and Landing of Unmanned Aerial Vehicle (무인항공기 자동이착륙을 위한 레이다 비콘 시스템의 추적필터 설계)

  • Kim, Man-Jo;Hwang, Chi-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • This paper presents a tracking filter of radar beacon system (RBS) for automatic takeoff and landing of an unmanned aerial vehicle. The proposed tracking filter is designed as the decoupled tracking filter to reduce the computational burden. Also, an adaptive estimation method of the measurement error covariance is proposed to provide an improved tracking performance compared to the conventional decoupled tracking filter whenever the accuracy of RBS observations is degraded. 100 times Monte Carlo runs performed to analyze the performance of the proposed tracking filter in case of normal operation and degraded operations, respectively. The simulation results show that the proposed tracking filter provides the improved tracking accuracy in comparison with the conventional decoupled tracking filter.

Collision Avoidance Maneuver Simulation of Tilt Rotor Unmanned Aerial Vehicle (틸트로터 무인기의 충돌회피기동 모사)

  • Hwang, Soo-Jung;Lee, Myeong-Kyu;Oh, Soo-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.33-45
    • /
    • 2007
  • The collision avoidance maneuver flight simulation for tilt rotor unmanned aerial vehicle was performed by time-accurate numerical integration method based on wind tunnel test data. Five representative collision avoidance maneuvers were simulated under constraints of aerodynamic stall, propulsion power, structural load, and control actuator capability. The collision avoidance performances of the maneuvers were compared by the computed collision avoidance times. The sensitivities of initial flight speed and collision zone shape on the collision avoidance time were investigated. From these results, it was found that the moderate pull-up turn maneuver defined using moderate pitch and maximum roll controls within simulation constraints is the most robust and efficient collision avoidance maneuver under the various flight speeds and collision object shapes in the tilt rotor UAV applications.

  • PDF

Autonomous Navigation of KUVE (KIST Unmanned Vehicle Electric) (KUVE (KIST 무인 주행 전기 자동차)의 자율 주행)

  • Chun, Chang-Mook;Suh, Seung-Beum;Lee, Sang-Hoon;Roh, Chi-Won;Kang, Sung-Chul;Kang, Yeon-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.617-624
    • /
    • 2010
  • This article describes the system architecture of KUVE (KIST Unmanned Vehicle Electric) and unmanned autonomous navigation of it in KIST. KUVE, which is an electric light-duty vehicle, is equipped with two laser range finders, a vision camera, a differential GPS system, an inertial measurement unit, odometers, and control computers for autonomous navigation. KUVE estimates and tracks the boundary of road such as curb and line using a laser range finder and a vision camera. It follows predetermined trajectory if there is no detectable boundary of road using the DGPS, IMU, and odometers. KUVE has over 80% of success rate of autonomous navigation in KIST.

Study on AHRS Sensor for Unmanned Underwater Vehicle

  • Kim, Ho-Sung;Choi, Hyeung-Sik;Yoon, Jong-Su;Ro, P.I.
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.165-170
    • /
    • 2011
  • In this paper, for the accurate estimation of the position and orientation of the UUV (unmanned underwater vehicle), an AHRS (Attitude Heading Reference System) was developed using the IMU (inertial measurement unit) sensor which provides information on acceleration and orientation in the object coordinate and the initial alignment algorithm and the E-KF (extended Kalman Filter). The initial position and orientation of the UUV are estimated using the initial alignment algorithm with 3-axis acceleration and geomagnetic information of the IMU sensor. The position and orientation of the UUV are estimated using the AHRS composed of 3-axis acceleration, velocity, and geomagnetic information and the E-KF. For the performance test of the orientation estimation of the AHRS, a testbed using IMU sensor(ADIS16405) and DSP28335 coded with an E-KF algorithm was developed and its performance was verified through tests.

A Selection of Path Planning Algorithm to Maximize Survivability for Unmanned Aerial Vehicle (무인 항공기 생존성 극대화를 위한 이동 경로 계획 알고리즘 선정)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.103-113
    • /
    • 2011
  • This research is to select a path planning algorithm to maximize survivability for Unmanned Aerial Vehicle(UAV). An UAV is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are currently employed in many military missions(surveillance, reconnaissance, communication relay, targeting, strike etc.) and a number of civilian applications(communication service, broadcast service, traffic control support, monitoring, measurement etc.). In this research, a mathematical programming model is suggested by using MRPP(Most Reliable Path Problem) and verified by using ILOG CPLEX. A path planning algorithm for UAV is selected by comparing of SPP(Shortest Path Problem) algorithms which transfer MRPP into SPP.

Performance Analysis of an Electric Powered Small Unmanned Aerial Vehicle (전기동력 소형무인항공기의 성능분석)

  • Lee, Chang-Ho;Kim, Seong-Wook;Kim, Dong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.226-230
    • /
    • 2010
  • In this paper, the performance of an electric powered small Unmanned Aerial Vehicle which has a battery and electric motor is analysed. Aerodynamic data is obtained through flight test and flight performance is predicted. As a result, we present the optimum flight speed for the maximum endurance and predict endurance and range according to the variation of flight speed.

  • PDF

A Study on Automatic Berthing Control of an Unmanned Surface Vehicle

  • Vu, Mai The;Choi, Hyeung-Sik;Oh, Ji-Youn;Jeong, Sang-Ki
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.192-201
    • /
    • 2016
  • This study examined a PD controller and its application to automatic berthing control of an unmanned surface vehicle (USV). First, a nonlinear mathematical model was established for the maneuvering of the USV in the presence of environmental forces. A PD control algorithm was then applied to control the rudder and propeller during an automatic berthing process. The algorithm consisted of two parts, namely the forward velocity control and heading angle control. The control algorithm was designed based on longitudinal and yaw dynamic models of the USV. The desired heading angle was obtained using the "line of sight" method. Finally, computer simulations of automatic USV berthing were performed to verify the proposed controller subjected to the influence of disturbance forces. The results of the simulation revealed a good performance of the developed berthing control system.

Development and Performance Analysis of Radar Signal Processing for Autonomous Unmanned Ground Vehicle (자율주행 무인차량용 레이더 신호처리부 개발 및 성능 분석)

  • Shin, Seung-Yong;Choi, Jun-Hyeok;Park, Sang-Hyun;Yeom, Dong-Jin;Kim, Jeong-Ryul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.514-522
    • /
    • 2013
  • In this paper, we present signal processing procedure and carry out performance analysis of FMCW(Frequency Modulation Continuous Wave) radar for Autonomous Unmanned Vehicle(AUV). In order to detect range profile and velocity of the unknown target, we must implement two step FFT(Fast Fourier Transform) procedure. And the DBF(Digital Beam Forming) algorithm has to be performed to obtain the angle information of the unknown target. To verify the performance of manufactured autonomous unmanned ground vehicle FMCW radar, we use the data of the real corner reflecter target.