• Title/Summary/Keyword: unmanned robot

Search Result 209, Processing Time 0.026 seconds

The Underwater UUV Docking with 3D RF Signal Attenuation based Localization (UUV의 수중 도킹을 위한 전자기파 신호 기반의 위치인식 센서 개발)

  • Kwak, Kyungmin;Park, Daegil;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.199-203
    • /
    • 2017
  • In this paper, we developed an underwater localization system for underwater robot docking using the electromagnetic wave attenuation model. Electromagnetic waves are generally known to be impossible to use in water environment. However, according to the conclusions of the previous studies on the attenuation characteristics in underwater, the attenuation pattern is uniform and its model was accurately proposed and verified in 3-dimensional space via the omnidirectional antenna. In this paper, a docking structure and localization sensor system are developed for a widely used cone type docking mechanism. First, we fabricated electromagnetic wave range sensor transmit modules. And a mobile sensor node is equipped with unmanned underwater vehicle(UUV)s. The mobile node senses the four different signal strength (RSS: Received Signal Strength) from fixed nodes, and the obtained RSS data are transformed to each distance information using the 3-Dimensional EM wave attenuation model. Then, the relative localization between the docking area and underwater robot can be achieved according to optimization algorithm. Finally, experimental results show the feasibility of the proposed localization system for the docking induction by comparing the errors in the actual position of the mobile node and the theoretical position through the model.

A Study on Modular Agricultural Robotic Platform for Upland (밭 노지 환경 주행을 위한 모듈형 농업 로봇 플랫폼에 대한 연구)

  • Cho, Yongjun;Woo, Seong Yong;Song, Su Hwan;Hong, Hyung Gil;Yun, Haeyong;Oh, Jang Seok;Kim, Junseong;Kim, Dong Woo;Seo, Kab Ho;Kim, Dae Hee
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.124-130
    • /
    • 2020
  • This paper designed modular agricultural robotic platform capable of a variety of agricultural tasks to address the problems caused by a decline in agricultural populations and an increase in average age. We propose a modular robotic platform that can perform many tasks required in field farming by replacing only work modules with common robotic platforms. This platform is capable of steering while driving on four wheels in an upland environment where farm work is performed, and an attitude control module is attached to each drive module to control the attitude of the platform. In addition, the width of the platform is designed to be variable in order to operate in various ridges according to the crop cultivation method. Finally, we evaluated five items: variable width, gradient, attitude control angle, step and road speed in order to carry out the farming industry while maintaining a stable posture.

Real-time Recognition of the Terrain Configuration to Increase Driving Stability for Unmanned Robots (안정성 향상을 위한 자율 주행 로봇의 실시간 접촉 지면 형상인식)

  • Jeon, Bongsoo;Kim, Jayoung;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.283-291
    • /
    • 2013
  • Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor(exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Thereby, UGVs have some difficulties regarding to finding optimal driving conditions for maximum maneuverability. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit(IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Depth-adaptive controller for spent nuclear fuel inspections

  • Song, Bongsub;Park, Jongwon;Yun, Dongwon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1669-1676
    • /
    • 2020
  • The IAEA held the IAEA Robotics Challenge 2017 (IRC2017) to protect workers during inspections of spent nuclear fuel and to improve work efficiency and accuracy rates. To this end, we developed an unmanned surface vehicle (USV) system called the spent fuel check vehicle (SCV). The SCV extracts and tracks the target through image processing, and it is necessary to find suitable parameters for the SNF storage environment in advance. This preliminary work takes time. It is also difficult to prepare the environment in which the work will proceed. In addition, if the preliminary work does not proceed as planned, the system will not move at the proper speed and will become unstable, with yawing and overshoot. To solve this problem, we developed a controller with a camera that can extract the depth at which the target is stored and allow distance-adaptive control. This controller is able to attenuate system instability factors such as yawing and overshoot better than existing controllers by continuously changing system operation parameters according to the depth. In addition, the time required for preliminary work during inspections can be shortened.

Improvements to a Modular Agricultural Robot Platform for Field Work (밭 노지 작업을 위한 모듈형 농업 로봇 플랫폼 개선에 관한 연구)

  • Kim, Dongwoo;Hong, Hyunggil;Cho, Yongjun;Yun, Haeyong;Oh, Jangseok;Gang, Minsu;Park, Huichang;Seo, Kabho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.80-87
    • /
    • 2021
  • Our study introduces an improved modular agricultural platform to provide convenience to agricultural workers. We upgrade the platform design in three parts, namely, by adding a 458 pattern tire, electricity control, and four-wheel steering function, to improve the platform performance. Results showed that the upgrades enhanced the platform performance and reduced its overall weight as compared with the existing platform. To demonstrate the performance of our improved platform, we conducted five types of experiments with respect to the climbing angle, variable width, attitude control, speed, and obstacle passing.

Path Following Performance of Pure Pursuit Algorithm-Based Mobile Robot (Pure pursuit 알고리즘 기반 모바일 로봇의 경로 추종 성능 분석)

  • Yang, Seung Geon;Lee, Juyoung;Kim, Hyeonsoo;Lim, Seung-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.532-535
    • /
    • 2022
  • Path following algorithms have been intensively studied for various mobile platforms such as planetary exploration, unmanned delivery, and autonomous driving. However, ensuring high accuracy in practical applications is challenging due to enormous uncertainty inherent in real environment. In this paper, we aim to reveal the guideline for the design and implementation by investigating the path following performance of mobile robot controlled by the pure pursuit algorithm. To this end, we evaluate the accuracy of the pure pursuit algorithm when tuning the look ahead distance and deploying erroneous actuator.

  • PDF

Autonomous Parking of Car-Like Mobile Robot Using Docking Formation (도킹 포메이션을 이용한 차량형 이동 로봇의 자율 주차)

  • Kwon, Ji-Wook;Kim, Jin Hyo;Seo, Jiwon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.180-189
    • /
    • 2014
  • For a autonomous parking of unmanned car, this paper proposes a posture regulation algorithm of a car-like mobile robot, which is supported by a docking formation and a feedback linearization control law. Unlike the previous researches based on a path-planning and optimization algorithms, the autonomous car implemented the proposed autonomous parking algorithm can be parked without much computational burden and a high performance processor. Stability of the proposed docking formation and feedback linearization control law are analyzed and performance of the proposed algorithm is shown by implementing to the simulations with six scenarios and an actual car in the experiment place.

A Study on Real-Time Walking Action Control of Biped Robot with Twenty Six Joints Based on Voice Command (음성명령기반 26관절 보행로봇 실시간 작업동작제어에 관한 연구)

  • Jo, Sang Young;Kim, Min Sung;Yang, Jun Suk;Koo, Young Mok;Jung, Yang Geun;Han, Sung Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.4
    • /
    • pp.293-300
    • /
    • 2016
  • The Voice recognition is one of convenient methods to communicate between human and robots. This study proposes a speech recognition method using speech recognizers based on Hidden Markov Model (HMM) with a combination of techniques to enhance a biped robot control. In the past, Artificial Neural Networks (ANN) and Dynamic Time Wrapping (DTW) were used, however, currently they are less commonly applied to speech recognition systems. This Research confirms that the HMM, an accepted high-performance technique, can be successfully employed to model speech signals. High recognition accuracy can be obtained by using HMMs. Apart from speech modeling techniques, multiple feature extraction methods have been studied to find speech stresses caused by emotions and the environment to improve speech recognition rates. The procedure consisted of 2 parts: one is recognizing robot commands using multiple HMM recognizers, and the other is sending recognized commands to control a robot. In this paper, a practical voice recognition system which can recognize a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.

Design of Lateral Fuzzy-PI Controller for Unmanned Quadrotor Robot (무인 쿼드로터 로봇 횡 방향 제어를 위한 Fuzzy-PI 제어기 설계)

  • Baek, Seung-Jun;Lee, Deok-Jin;Park, Jong-Ho;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.164-170
    • /
    • 2013
  • Quadrotor UAV (Unmanned Aerial Vehicle) is a flying robotic platform which has drawn lots of attention in the recent years. The attraction comes from the fact that it is able to perform agile VTOL (Vertical Take-Off Landing) and hovering functions. In addition, the efficient modular structure composed of four electric rotors makes its design easier compared to other single-rotor type helicopters. In many cases, a quadrotor often utilizes vision systems in order to obtain altitude control and navigation solution in hostile environments where GPS receivers are not working or deniable. For carrying out their successful missions, it is essential for flight control systems to have fast and stable control responses of heading angle outputs. This paper presents a Fuzzy Logic based lateral PI controller to stabilize and control the quadrotor vehicle equipped with vision systems. The advantage of using the fuzzy based PI controller lies in the fact that it could acquire a desired output response of a heading angle even in presence of disturbances and uncertainties. The performance comparison of the newly proposed Fuzzy-PI controller and the conventional PI controller was carried out with various simulation results.

Study on the Improved Target Tracking for the Collaborative Control of the UAV-UGV (UAV-UGV의 협업제어를 위한 향상된 Target Tracking에 관한 연구)

  • Choi, Jae-Young;Kim, Sung-Gaun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.5
    • /
    • pp.450-456
    • /
    • 2013
  • This paper suggests the target tracking method improved for the collaboration of the quad rotor type UAV (Unmanned Aerial Vehicle) and omnidirectional Unmanned Ground Vehicle. If UAV shakes or UGV moves rapidly, the existing method generates a phenomenon that the tracking object loses the tracking target. To solve the problems, we propose an algorithm that can track continually when they lose the target. The proposed algorithm stores the vector of the landmark. And if the target was lost, the control signal was inputted so that the landmark could move continuously to the direction running out. Prior to the experiment, Proportional and integral control were used in 4 motors in order to calibrate the Heading value of the omnidirectional mobile robot. The landmark of UGV was recognized as the camera adhered to UAV and the target was traced through the proportional-integral-derivative control. Finally, the performance of the target tracking controller and proposed algorithm was evaluated through the experiment.