• Title/Summary/Keyword: unmanned aviation vehicle

Search Result 79, Processing Time 0.024 seconds

Flight Scenario Trajectory Design of Fixed Wing and Rotary Wing UAV for Integrated Navigation Performance Analysis (통합항법 성능 분석을 위한 고정익, 회전익 무인항공기의 비행 시나리오 궤적 설계)

  • Won, Daehan;Oh, Jeonghwan;Kang, Woosung;Eom, Songgeun;Lee, Dongjin;Kim, Doyoon;Han, Sanghyuck
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • As the use of unmanned aerial vehicles increases, in order to expand the operability of the unmanned aerial vehicle, it is essential to develop an unmanned aerial vehicle traffic management system, and to establish the system, it is necessary to analyze the integrated navigation performance of the unmanned aerial vehicle to be operated. Integrated navigation performance is affected by various factors such as the type of unmanned aerial vehicle, flight environment, and guidance law algorithm. In addition, since a large amount of flight data is required to obtain high-reliability analysis results, efficient and consistent flight scenarios are required. In this paper, a flight scenario that satisfies the requirements for integrated navigation performance analysis of rotary and fixed-wing unmanned aerial vehicles was designed and verified through flight experiments.

A Comparative Analysis of UAV Accident Investigation between Korea and Major Countries (한국과 주요국 간 무인항공기 사고조사에 관한 비교분석)

  • Hakbong Lee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.3
    • /
    • pp.196-204
    • /
    • 2024
  • With the global drone market surging in size, most drones are focused on design, production, operation and sales. However, there are no procedures and guidelines for drone accidents and accident investigations around the world. Recently, the International Air Accident Investigation Association (ISASI) has recognized the problems and has been guiding guidelines for unmanned aerial vehicle accident investigation to support them. Therefore, in this paper, we would like to compare the status of unmanned aerial vehicle accident investigation in each country, analyze the procedures and items of investigation, and present the direction of improvement in the procedures for conducting unmanned aerial vehicle accident investigation in Korea.

Integrated Simulation Environment for Heterogeneous Unmanned Vehicle using ROS and Pixhawk (ROS와 픽스호크를 활용한 이기종 무인 이동체간 통합 시뮬레이션 환경 구축)

  • Kim, Hyeong-Min;Lee, Dae-Woo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • Cooperative systems among various unmanned vehicles are widely used in various field and emerging. Unmanned vehicles are able to operate various missions without operator onboard and they are highly stable. Collaborative work of multiple unmanned vehicles is emphasized due to the difficulty of recent missions such as SEAD (Suppression of the Enemy Air Defenses), MUSIC (Manned Unmanned Systems Integration Capability), goldentime in the rescue mission. In this study, ROS and Pixhawk were proposed as a method of construction of a collaboration system and framework for an integrated simulation environment for heterogeneous unmanned vehicles is proposed. Totally 5 unmanned vehicles were set for the simulation for the observation of illegal fishing boats. This paper shows the feasibility of the cooperative system using ROS and Pixhawk through the simulation and the experiment.

Spatial database architecture for organizing a unified information space for manned and unmanned aviation

  • Maksim Kalyagin;Yuri Bukharev
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.6
    • /
    • pp.545-554
    • /
    • 2023
  • The widespread introduction of unmanned aircrafts has led to the understanding of the need to organize a common information space for manned and unmanned aircrafts, which is reflected in the Russian Unmanned aircraft system Traffic Management (RUTM) project. The present article deals with the issues of spatial information database (DB) organization, which is the core of RUTM and provides storage of various data types (spatial, aeronautical, topographical, meteorological, vector, etc.) required for flight safety management. Based on the analysis of functional capabilities and types of work which it needs to ensure, the architecture of spatial information DB, including the base of source information, base of display settings, base of vector objects, base of tile packages and also a number of special software packages was proposed. The issues of organization of these DB, types and formats of data and ways of their display are considered in detail. Based on the analysis it was concluded that the optimal construction of the spatial DB for RUTM system requires a combination of different model variants and ways of organizing data structures.

A Tracking Filter Design of the Radar Beacon System for Automatic Take-off and Landing of Unmanned Aerial Vehicle (무인항공기 자동이착륙을 위한 레이다 비콘 시스템의 추적필터 설계)

  • Kim, Man-Jo;Hwang, Chi-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • This paper presents a tracking filter of radar beacon system (RBS) for automatic takeoff and landing of an unmanned aerial vehicle. The proposed tracking filter is designed as the decoupled tracking filter to reduce the computational burden. Also, an adaptive estimation method of the measurement error covariance is proposed to provide an improved tracking performance compared to the conventional decoupled tracking filter whenever the accuracy of RBS observations is degraded. 100 times Monte Carlo runs performed to analyze the performance of the proposed tracking filter in case of normal operation and degraded operations, respectively. The simulation results show that the proposed tracking filter provides the improved tracking accuracy in comparison with the conventional decoupled tracking filter.

Collision Avoidance Maneuver Simulation of Tilt Rotor Unmanned Aerial Vehicle (틸트로터 무인기의 충돌회피기동 모사)

  • Hwang, Soo-Jung;Lee, Myeong-Kyu;Oh, Soo-Hun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.33-45
    • /
    • 2007
  • The collision avoidance maneuver flight simulation for tilt rotor unmanned aerial vehicle was performed by time-accurate numerical integration method based on wind tunnel test data. Five representative collision avoidance maneuvers were simulated under constraints of aerodynamic stall, propulsion power, structural load, and control actuator capability. The collision avoidance performances of the maneuvers were compared by the computed collision avoidance times. The sensitivities of initial flight speed and collision zone shape on the collision avoidance time were investigated. From these results, it was found that the moderate pull-up turn maneuver defined using moderate pitch and maximum roll controls within simulation constraints is the most robust and efficient collision avoidance maneuver under the various flight speeds and collision object shapes in the tilt rotor UAV applications.

  • PDF

Applicable Focal Points of HFACS to Investigate Domestic Civil Unmanned Aerial Vehicle Accidents (국내 민간 무인항공기 사고조사 HFACS 적용중점)

  • Lee, Keon-Hee;Kim, Hyeon-Deok
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.3
    • /
    • pp.256-266
    • /
    • 2021
  • Domestic and foreign studies point to human factors as the main cause of unmanned aerial vehicle accidents, and HFACS is introduced as a technique to effectively analyze these human factors. Until now, domestic and foreign cases of analyzing the human factors of unmanned aerial vehicle accidents using HFACS were mainly targeted by military unmanned aerial vehicles, which can be used as an objective cause identification and similar accident prevention tool. In particular, identifying the focus of HFACS application considering the performance and operation conditions of domestic civilian unmanned aerial vehicles is expected to greatly help identify the cause and prevent recurrence in the event of an accident. Based on HFACS version 7.0, this study analyzed the accident investigation report data conducted by Korea Aviation and Railway Accident Investigation Board to identify the focus of HFACS application that can be used for domestic civilian unmanned aircraft accident investigations.

Analysis of Thrust Characteristics with Propeller Shape for UAV (무인항공기용 프로펠러 형상에 따른 추력특성 해석)

  • Soohyeon Lee;Hwankee Cho
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.4
    • /
    • pp.57-64
    • /
    • 2022
  • A study on propllers for unmaned aerial vehicles is conducted using the open softwares. Since the shape of the propeller is closely related to the thurst characteristics of the propulsion system, adopting an appropriate propeller will significantly reflect stable aerodynamic performances. In this study, propellers for unmanned aerial vehicles were modeled by using OpenVSP and Propel for comparison, the thrust characteristics according to the number of blades and the diameter of the propeller were analyzed. In addition, the tendency of thrust characteristics according to various propeller pitch angles was confirmed. Based on the analysis results of this study, the applicability of the propeller shape to the design of the unmanned aerial vehicle was confirmed. It is shownthat the analysis results of this study can be utilized when modeling the propeller shape in research such as a conceptual design of unmanned aerial vehicle. In this case, it should be noted that OpenVSP does not involve the viscous effect of air.

A Study on the Necessity of Weather Information for Low Altitude Aircraft (저고도 운용 항공기를 위한 기상정보의 필요성에 관한 연구)

  • Cho, Young-Jin;Kim, Su-Ro
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.1
    • /
    • pp.45-58
    • /
    • 2020
  • According to the Ministry of Land, Infrastructure and Transport press release ('18.12.21.) The amendment of the Aviation Business Act will reduce the capital requirements for aviation leisure operators and make it easier to enter aviation leisure businesses by improving regulations on small air transportation business. In addition, as the scale of the UAV(Unmanned Aerial Vehicle) sector is expected to increase globally, the dramatic increase in low altitude operating aircraft, including this, must be taken into account. The low altitude aircraft category is divided into small airplanes, helicopters, light aircrafts and ultra-light aircrafts, and instructors include school instructor pilots and student pilots, military and national helicopter pilots, and aviation leisure operators. In case of low altitude aircraft, there are cases of canceling operations due to low visibility and low clouds, and aircraft accidents due to excessive operation and sudden weather phenomenon. Therefore, in order to prevent low-altitude aircraft accidents, a safe flight plan based on weather conditions and weather forecasts and more accurate and local weather forecasts and weather forecast data are needed to prepare for the rapidly changing weather conditions.

A Study on Airworthiness Certification Standards for Military Small Rotary-Wing Unmanned Aerial Vehicles (군용 소형 회전익무인기 감항인증기준에 대한 연구)

  • Yang, Junmo;Lee, Sangchul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.78-83
    • /
    • 2021
  • In modern society, the use of small rotary-wing unmanned aerial vehicles such as drones is increasing. As the military considers tactics using drones, demand for drones is increasing. However, there is still no airworthiness certification standard for drones for safety. In this paper, we proposed airworthiness certification standards for small rotorcraft unmanned aerial vehicles based on CS-LURS in Europe and STANG-4703, 4738 (draft) of the North Atlantic Treaty Organization. In addition, airworthiness certification standards have been strengthened through the case of unmanned aerial vehicle accidents in operation by the Korean military. The airworthiness certification standards for small rotary-wing unmanned aerial vehicles will be supplemented through a demonstration project.