• Title/Summary/Keyword: unmanned air vehicles

Search Result 82, Processing Time 0.031 seconds

Dynamic Modeling and Stabilization of a Tri-Ducted Fan Unmanned Aerial Vehicles using Lyapunov Control (삼중 덕티드 팬 비행체 운동모델링 및 리아푸노프 제어를 이용한 안정화)

  • Na, Kyung-Seok;Won, Dae-Hee;Yoon, Seok-Hwan;Sung, Sang-Kyung;Ryu, Min-Hyoung;Cho, Jin-Soo;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.574-581
    • /
    • 2012
  • Because of the exposed blade, the UAV using the rotors entail the risks during operation. While a wrapped duct around the fan blades reduces risks, it is a higher thrust performance than the same power load rotor. In this paper, for applying advantages of a ducted fan, the tri-ducted fan air vehicle configuration is proposed. The vehicle has three ducted fans. Two of them are the same shape and size and the third one is the smaller. It is possible to control a rapid attitude stability using thrust vector control. The equations of motion of the tri-ducted fan were derived. Lyapunov control input was applied to the system and stable inputs were derived. A nonlinear simulation was fulfilled by using parameters of a prototype vehicle. It verified a stable attitude and analyzed results.

UAV LRU Layout Optimizing Using Genetic Algorithm (유전알고리즘을 이용한 무인항공기 장비 배치 최적 설계)

  • Back, Sunwoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.621-629
    • /
    • 2020
  • LRU layout is a complex problem that requires consideration of various criteria such as airworthiness, performance, maintainability and environmental requirements. As aircraft functions become more complex, the necessary equipment is increasing, and unmanned aerial vehicles are equipped with more equipment as a substitute for pilots. Due to the complexity of the problem, the increase in the number of equipment, and the limited development period, the placement of equipment is largely dependent on the engineer's insight and experience. For optimization, quantitative criteria are required for evaluation, but criteria such as safety, performance, and maintainability are difficult to quantitatively compare or have limitations. In this study, we consider the installation and maintenance of the equipment, simplify the deployment model to the traveling salesman problem, Optimization was performed using a genetic algorithm to minimize the weight of the connecting cable between the equipment. When the optimization results were compared with the global calculations, the same results were obtained with less time required, and the improvement was compared with the heuristic.

Study on Velocity and Altitude Keeping Method of a UAV Around Service Ceiling Altitude (실용상승한도 고도 부근에서 무인기의 속도 및 고도유지 제어에 관한 연구)

  • Hong, Jin-sung;Won, Dae-yeon;Jang, Se-ah
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.383-388
    • /
    • 2021
  • Air-breathing engines used in aircraft have a performance limit as the altitude increases, and this determines the service and absolute ceiling altitude. The method of maintaining altitude and speed in a fixed-wing aircraft in level flight using classical control method is generally using thrust for speed increase/deceleration and pitch attitude for altitude increase/decrease. If this method is used near the service ceiling altitude, increasing the pitch to reduce the altitude error results in a speed reduction. Therefore, it is necessary to use a control method that maintains the speed first using the pitch attitude. Especially in the case of unmanned aerial vehicles, these two methods should be automatically available at the right time. In this paper, we propose a method of switching the speed and altitude maintenance algorithm near service ceiling altitude.

Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Network

  • Li, Zhiwei;Lu, Yu;Wang, Zengguang;Qiao, Wenxin;Zhao, Donghao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4682-4705
    • /
    • 2020
  • The Unmanned Aerial Vehicles (UAV) networks consisting of low-cost UAVs are very vulnerable to smart jammers that can choose their jamming policies based on the ongoing communication policies accordingly. In this article, we propose a novel cloud and edge-aided mobile communication scheme for low-cost UAV network against smart jamming. The challenge of this problem is to design a communication scheme that not only meets the requirements of defending against smart jamming attack, but also can be deployed on low-cost UAV platforms. In addition, related studies neglect the problem of decision-making algorithm failure caused by intermittent ground-to-air communication. In this scheme, we use the policy network deployed on the cloud and edge servers to generate an emergency policy tables, and regularly update the generated policy table to the UAVs to solve the decision-making problem when communications are interrupted. In the operation of this communication scheme, UAVs need to offload massive computing tasks to the cloud or the edge servers. In order to prevent these computing tasks from being offloaded to a single computing resource, we deployed a lightweight game algorithm to ensure that the three types of computing resources, namely local, edge and cloud, can maximize their effectiveness. The simulation results show that our communication scheme has only a small decrease in the SINR of UAVs network in the case of momentary communication interruption, and the SINR performance of our algorithm is higher than that of the original Q-learning algorithm.

Analysis of Time Series Changes in the Surrounding Environment of Rural Local Resources Using Aerial Photography and UAV - Focousing on Gyeolseong-myeon, Hongseong-gun - (항공사진과 UAV를 이용한 농촌지역자원 주변환경의 시계열 변화 분석 - 충청남도 홍성군 결성면을 중심으로 -)

  • An, Phil-Gyun;Eom, Seong-Jun;Kim, Yong-Gyun;Cho, Han-Sol;Kim, Sang-Bum
    • Journal of Korean Society of Rural Planning
    • /
    • v.27 no.4
    • /
    • pp.55-70
    • /
    • 2021
  • In this study, in the field of remote sensing, where the scope of application is rapidly expanding to fields such as land monitoring, disaster prediction, facility safety inspection, and maintenance of cultural properties, monitoring of rural space and surrounding environment using UAV is utilized. It was carried out to verify the possibility, and the following main results were derived. First, the aerial image taken with an unmanned aerial vehicle had a much higher image size and spatial resolution than the aerial image provided by the National Geographic Information Service. It was suitable for analysis due to its high accuracy. Second, the more the number of photographed photos and the more complex the terrain features, the more the point cloud included in the aerial image taken with the UAV was extracted. As the amount of point cloud increases, accurate 3D mapping is possible, For accurate 3D mapping, it is judged that a point cloud acquisition method for difficult-to-photograph parts in the air is required. Third, 3D mapping technology using point cloud is effective for monitoring rural space and rural resources because it enables observation and comparison of parts that cannot be read from general aerial images. Fourth, the digital elevation model(DEM) produced with aerial image taken with an UAV can visually express the altitude and shape of the topography of the study site, so it can be used as data to predict the effects of topographical changes due to changes in rural space. Therefore, it is possible to utilize various results using the data included in the aerial image taken by the UAV. In this study, the superiority of images acquired by UAV was verified by comparison with existing images, and the effect of 3D mapping on rural space monitoring was visually analyzed. If various types of spatial data such as GIS analysis and topographic map production are collected and utilized using data that can be acquired by unmanned aerial vehicles, it is expected to be used as basic data for rural planning to maintain and preserve the rural environment.

A Study of Model-Based Aircraft Safety Assessment (모델기반 항공기 안전성평가에 관한 연구)

  • Kim, Ju-young;Lee, Dong-Min;Lee, Byoung-Gil;Gil, Gi-Nam;Kim, Kyung-Nam;Na, Jong-Whoa
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.24-32
    • /
    • 2021
  • Personal Air Vehicle (PAV), Cargo UAS (Cargo UAS), and existing manned and unmanned aircraft are key vehicles for urban air mobility (UAM), and should demonstrate compatibility for the design of aircraft systems. The safety assessment required by for certification to ensure safety and reliability should be systematically performed throughout the entire cycle from the beginning of the aircraft development process. However, with the increasing complexity of safety critical aviation systems and the application of state-of-the-art systems, conventional experience-based and procedural-based safety evaluation methods make ir difficult to objectively assess safety requirements and system safety. Therefore, Model-Based Safety Assessment (MBSA) using modeling and simulation techniques is actively being studied at domestic and foreign countries to address these problems. In this paper, we propose a Model-Based Safety Evaluation framework utilizing modeling and simulation-based integrated flight simulators. Our case studies on the Traffic Collision Availability System (TCAS) and Wheel Brake System (WBS) confirmed that they are practical for future safety assessments.

A Comparison of Symbol Error Performance for SC-FDE and OFDM Transmission Systems in Modeled Underwater Acoustic Communication Channel (모델링된 수중음향 채널환경에서 SC-FDE와 OFDM 전송방식의 심볼오율 비교)

  • Hwang, Ho-Seon;Park, Gyu-Tae;Joo, Jae-Hoon;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.139-146
    • /
    • 2018
  • Underwater acoustic communication can be applied to various area such as scientific, commercial and military survey using Autonomous Underwater Vehicles and Unmanned Underwater Vehicles. Underwater communication is studying very actively by advanced country like United States. But differ from wireless communication in the air, underwater acoustic communication has some difficult problems, ISI(Inter Symbol Interference) due to multipath and limit of transmission bandwidth due to slow propagation of sound wave. In this paper, SC-FDE and OFDM transmission system for the cancellation of ISI in conjunction with underwater acoustic channel modeling are applied to the underwater simulation of communication. The performance of these methods in the simulation guide to possibility of adopting in underwater acoustic communication algorithm. For this purpose, we compare SER performance of SC-FDE with that of OFDM for modelled underwater channel. Underwater channel is generated by Bellhop model. Simulation results show above 5dB SNR gain at 10-3 SER. And it demonstrate SC-FDE is efficient method for underwater acoustic communication.

International Law on Drone's Military use - Focuse on Proportionality and Discrimination Principles - (드론의 군사적 활용에 따른 국제법적 쟁점 - 차별의 원칙과 비례성 원칙을 중심으로-)

  • Cho, Hong-Je;Kang, Ho-Jeung
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.1
    • /
    • pp.127-152
    • /
    • 2020
  • Despite growing international cooperation for maintenance of international peace and security, wars continue to occur due to conflicted state interests. Continuing conflicts has advanced development of various weapon systems such as global integrated intelligence, surveillance and reconnaissance. However, with a big increase in the number of civilian casualties caused by the weapon systems development, the international community has also advanced diplomatic efforts to minimize deaths of civilian and military personnel. Therefore, it is essential to observe the principle of discrimination between combatants and non-combatants when operating unmanned aerial vehicles (UAVs), better known as drones. Drones have become more capable of distinguishing combatants from non-combatants due to its high-tech prowess. In the operation of drones, any parties involved in combat or the war are responsible for mounting civilian casualties. In addition, it should comply with the principle of proportionality that calls for a balance between results of such action and expected military advantage anticipated from the attack. The rule of proportionality prohibits use of military force which may be expected to cause excessive civilian harm. Drones have been able to track and monitor targets for hours and select the accurate locations of the targets. The aim is to reduce civilian losses and damage to a minimum. Drones meet the standards of Article 51.4 of the Additional Protocol.

The Legal nature of a contract for supply of a special purpose aircraft -The legitimacy of contract cancellation on the grounds that the performance specification is not satisfied in the purchase specification- (특수 항공기 공급계약의 법적 성질 - 구매규격서상 성능요건 미달을 이유로 한 계약해제의 정당성 -)

  • Kwon, Chang-Young
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.31 no.2
    • /
    • pp.37-72
    • /
    • 2016
  • In the aerospace field, besides special purpose airplanes, contracts for supply of various types of products such as prototypes, unmanned aerial vehicles and space launch vehicles are increasing. In the case of the contractor, it was planned to spend a large amount of money to supply the production, but if the purchase specification that presents the quality and performance standard of the product is poor or lacks the capacity to judge the performance, consuming enormous amounts of time and money. Even if the undertaker does not have the ability to supply the products with the required performance and quality to achieve the purpose of the contract, he/she must pay the cost of burial due to the incompleteness of the work and the compensation for the cancellation of the contract. In this case, the defendant ordered the plaintiff to supply the aircraft by the Happy Box method, which is capable of ILS Offset flight as specified in the Purchase Specification, but the plaintiff attempted to supply the aircraft by the RNAV method. Although the ILS ground signal can be inspected by the RNAV method, the aircraft manufactured in the manner claimed by the plaintiff does not have the ILS Offset flight function required by the purchase specification, so the defendant can not achieve the purpose required by the purchase specification. It was a question of whether a defendant's cancellation of contract was legitimate. The aircraft, which is the object of this contract, is a subordinate substitute, so the case contract is of undertaking. Therefore, in order to complete the work in this contract, the major structural parts of the aircraft must be manufactured as agreed and have the performance generally required in the social sense. However, the aircraft delivered by the plaintiff has serious defects because the defendant can not achieve the purpose required by the purchase specification due to the lack of the ILS Offset flight function required by the purchase specification. This deficiency is impossible for the plaintiff to repair, so the defendant 's cancellation of the contract is legitimate.

Legal Status and Major Issue of Maritime Autonomous Surface Ships (MASS) in International Law (자율운항선박의 국제법 지위와 주요쟁점에 관한 연구)

  • Chun, Jung-soo;Park, Han-seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.256-265
    • /
    • 2021
  • Ground, sea and air mobility, such as vehicles, ships, and airplanes, are generally operated by people. Based on the innovative development of autonomous decision-making systems and artificial intelligence (AI) following the recent fourth industrial revolution, research and development on maritime autonomous surface ships (MASS) is been actively performed around the world. Before the realization of the commercialization of MASS in international maritime transport, it is urgent to clarify the characteristics of this ship and its international legal status. This paper aims to analyze the concern of whether a ship without crew members will eventually be operated as a fully unmanned ship or can be recognized as a ship under international law as the number of crew members is gradually reduced owing to the development stage of autonomous ships. Consequently, based on the United Nations Convention on the Law of the Sea (UNCLOS) and the regulations of the International Maritime Organization (IMO), it was found that MASS has the same international legal status as general ships. In addition this paper presents the working principles of enacting and revising the IMO Conventions and international legal measures necessary for the safe operation of MASS.