• Title/Summary/Keyword: unmanned air traffic management

Search Result 12, Processing Time 0.021 seconds

Development Trend of the Autonomous Flight Control Technology (자율비행기술 동향)

  • Seong, Kie-Jeong;Kim, Eung-Tai;Kim, Seong-Pil
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.143-153
    • /
    • 2008
  • This paper describes the current research trend and future development direction of autonomous flight of the aircraft. The autonomous flight means that aircraft control system recognize and cope with the emergency situation confronted during the flight by itself. Current research for autonomous flight technology is mainly performed for the application to unmanned air vehicle. Considering advent of future air traffic management system and increasing demand of the unmanned air vehicle application, however, autonomous flight technology required to be combined with future air traffic management system. In this paper, the current air traffic management system and anticipating change in future air traffic management system was investigated and research activities of autonomous flight technology was described as well as future prospect.

  • PDF

A study on the impact and activation plan of unmanned aerial vehicle service (무인항공기 서비스 영향성과 활성화 방안 연구)

  • Yoo, Soonduck
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.1-7
    • /
    • 2022
  • The purpose of this study is to discuss the impact of unmanned aerial vehicle service and how to activate it. The discussion on the impact of the introduction of the unmanned aerial vehicle service was examined in terms of economic, environmental, and social acceptance, and a plan to revitalize the industry was presented. In terms of economic impact, if transportation services are increased using unmanned aerial vehicles in the future, road-based transportation cargo may decrease and road movement speed may increase due to reduced road congestion. This can have a positive effect on the increase in the value of land or real estate assets, and it also provides an impact on smart city design. In terms of environmental impact, unmanned aerial vehicles (UAVs) generally move through electricity, so they emit less exhaust gas compared to other existing devices, such as vehicles and railroads, and thus have less environmental impact. However, noise can have a negative impact on the habitat in the presence of wild animals along their migration routes. In terms of social acceptability of unmanned aerial vehicles (UAV) technology, areas that are declining due to the emergence of new services may appear, and at the same time, organizations that create profits may appear, causing conflicts between industries. Therefore, it is essential to form a social consensus on the acceptance of emerging industries. The government should come up with various countermeasures to minimize the negative impact that reflects the characteristics of the unmanned aerial vehicle use service. Just as various systems such as road signs were introduced so that vehicles can be operated on the ground to secure air routes in the mid- to long-term for revitalization of unmanned-based industries, development and establishment of services that should be introduced and applied prior to constructing air routes I need this. In addition, the design and implementation of information collection and operation plans for unmanned air traffic management in Korea and a plan to secure a control system for each region should also be made. This study can contribute to providing ideas for mid- to long-term research on new areas with the development of the unmanned aerial vehicle industry.

Security Problems in Aircraft Digital Network System and Cybersecurity Strategies (항공기 디지털 네트워크 시스템 보안 문제점과 사이버 대응 전략)

  • Lim, In-Kyu;Kang, Ja-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.633-637
    • /
    • 2017
  • Cyber attacks on aircraft and aeronautical networks are not much different from cyber attacks commonly found in the ground industry. Air traffic management infrastructure is being transformed into a digital infrastructure to secure air traffic. A wide variety of communication environments, information and communications, navigation, surveillance and inflight entertainment systems are increasingly threatening the threat posed by cyber terrorism threats. The emergence of unmanned aircraft systems also poses an uncontrollable risk with cyber terrorism. We have analyzed cyber security standards and response strategies in developed countries by recognizing the vulnerability of cyber threats to aircraft systems and aviation infrastructure in next generation data network systems. We discussed comprehensive measures for cybersecurity policies to consider in the domestic aviation environment, and discussed the concept of security environment and quick response strategies.

Analysis of the Total System Error Correlation of Hybrid Fixed-Wing UAV (Unmanned Aerial Vehicle) according to Environmental Factor (환경요인에 따른 복합형 수직이착륙 무인항공기의 통합 시스템 오차 상관도 분석)

  • Songgeun Eom;Jeongmin Kim;Jeonghwan Oh;Dongjin Lee;Doyoon Kim;Sanghyuck Han
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.1
    • /
    • pp.11-17
    • /
    • 2023
  • In this study, the correlation analysis between total system error and environmental factor variables was performed to confirm the effect on the performance of the integrated navigation system by various environmental factors. To collect flight data of hybrid vertical take-off and landing UAVs, scenarios including various turning sections and straight sections such as left turn, right turn, turning rate, and path change angle were selected, and environmental data of wind direction, wind speed, temperature, air pressure, and humidity were collected in real time through weather station. As a result of the correlation analysis between the collected flight data and environmental data, it was concluded that the performance of the integrated navigation system by environmental factors within the collected data was not significant affected and was robust.

Study on UAV Flight Patterns and Simulation Modelling for UTM (저고도 무인기 교통관리 체계에서 무인기 비행패턴 분류 및 시뮬레이션 모형 개발)

  • Jung, Kyu-sur;Kim, Se-Yeon;Lee, Keum-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.1
    • /
    • pp.13-19
    • /
    • 2018
  • In this paper, we classified a flight pattern of unmanned aerial vehicle(UAV) which will be operating in UTM system and analyzed its flight pattern by purpose of use. Flight patterns of UAV are sorted into three patterns which are circling, monitoring and delivery. We considered four cases of industry areas using UAV which are agriculture, infrastructure monitoring, public safety & security(p.s.s) and delivery. It is necessary to build a simulation model as a verification tool for applying the flight pattern according to the use of UAV to the real UTM system. Therefore, we propose the simulation model of UAV with updating states over time. We applied simulation to UAV monitoring flight pattern, and confirmed that the flight was done by the given input data. The simulation model will be used in the future to verify that the UAV has various flight patterns and can operate safely and efficiently for the intended use.

A Study on the Establishment of Minimum Safe Altitude and UAS Operating Limitations (최저비행고도와 UAS 운영제한고도 구축에 관한 연구)

  • Kim, Do Hyun;Lee, Dong Jin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.94-99
    • /
    • 2021
  • UTM is an air traffic management ecosystem under development for autonomously controlled operations of UAS by the FAA, NASA, other federal partner agencies, and industry. They are collaboratively exploring concepts of operation, data exchange requirements, and a supporting framework to enable multiple UAS operations beyond visual line-of-sight at altitudes under AGL 500ft in airspace where air traffic services are not provided. Minimum Safe Altitude is a generic expression, used in various cases to denote an altitude below which it is unsafe to fly owing to presence of terrain or obstacles. The European drone regulation mentions that the UAS is maintained within 120 metres from the closest point of the surface of the earth during flight, except when overflying an obstacle. This study attempted to develop a minimum flight altitude database system. Based on domestic and international rules and regulations on setting the minimum flight altitude it is expected that it can be applied to the operation of aircraft and unmanned aerial system in UTM environments for specific area in Korea.

A Study on the Legislation for the Commercial and Civil Unmanned Aircraft System Operation (국내 상업용 민간 무인항공기 운용을 위한 법제화 고찰)

  • Kim, Jong-Bok
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.28 no.1
    • /
    • pp.3-54
    • /
    • 2013
  • Nowadays, major advanced countries in aviation technology are putting their effort to develop commercial and civil Unmanned Aircraft System(UAS) due to its highly promising market demand in the future. The market scale of commercial and civil UAS is expected to increase up to approximately 8.8 billon U.S. dollars by the year 2020. The usage of commercial and civil UAS covers various areas such as remote sensing, relaying communications, pollution monitoring, fire detection, aerial reconnaissance and photography, coastline monitoring, traffic monitoring and control, disaster control, search and rescue, etc. With the introduction of UAS, changes need to be made on current Air Traffic Management Systems which are focused mainly manned aircrafts to support the operation of UAS. Accordingly, the legislation for the UAS operation should be followed. Currently, ICAO's Unmanned Aircraft System Study Group(UASSG) is leading the standardization process of legislation for UAS operation internationally. However, some advanced countries such as United States, United Kingdom, Australia have adopted its own legislation. Among these countries, United States is most forth going with President Obama signing a bill to integrate UAS into U.S. national airspace by 2015. In case of Korea, legislation for the unmanned aircraft system is just in the beginning stage. There are no regulations regarding the operation of unmanned aircraft in Korea's domestic aviation law except some clauses regarding definition and permission of the unmanned aircraft flight. However, the unmanned aircrafts are currently being used in military and under development for commercial use. In addition, the Ministry of Land, Infrastructure and Transport has a ambitious plan to develop commercial and civil UAS as Korea's most competitive area in aircraft production and export. Thus, Korea is in need of the legislation for the UAS operation domestically. In this regards, I personally think that Korea's domestic legislation for UAS operation will be enacted focusing on following 12 areas : (1)use of airspace, (2)licenses of personnel, (3)certification of airworthiness, (4)definition, (5)classification, (6)equipments and documents, (7)communication, (8)rules of air, (9)training, (10)security, (11)insurance, (12)others. Im parallel with enacting domestic legislation, korea should contribute to the development of international standards for UAS operation by actively participating ICAO's UASSG.

  • PDF

Throughput and Delay of Single-Hop and Two-Hop Aeronautical Communication Networks

  • Wang, Yufeng;Erturk, Mustafa Cenk;Liu, Jinxing;Ra, In-ho;Sankar, Ravi;Morgera, Salvatore
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2015
  • Aeronautical communication networks (ACN) is an emerging concept in which aeronautical stations (AS) are considered as a part of multi-tier network for the future wireless communication system. An AS could be a commercial plane, helicopter, or any other low orbit station, i.e., Unmanned air vehicle, high altitude platform. The goal of ACN is to provide high throughput and cost effective communication network for aeronautical applications (i.e., Air traffic control (ATC), air traffic management (ATM) communications, and commercial in-flight Internet activities), and terrestrial networks by using aeronautical platforms as a backbone. In this paper, we investigate the issues about connectivity, throughput, and delay in ACN. First, topology of ACN is presented as a simple mobile ad hoc network and connectivity analysis is provided. Then, by using information obtained from connectivity analysis, we investigate two communication models, i.e., single-hop and two-hop, in which each source AS is communicating with its destination AS with or without the help of intermediate relay AS, respectively. In our throughput analysis, we use the method of finding the maximum number of concurrent successful transmissions to derive ACN throughput upper bounds for the two communication models. We conclude that the two-hop model achieves greater throughput scaling than the single-hop model for ACN and multi-hop models cannot achieve better throughput scaling than two-hop model. Furthermore, since delay issue is more salient in two-hop communication, we characterize the delay performance and derive the closed-form average end-to-end delay for the two-hop model. Finally, computer simulations are performed and it is shown that ACN is robust in terms of throughput and delay performances.

Analysis of Communication Performance Requirements for Initial-Phase UAM Services (UAM 초기 운영을 위한 통신 성능 요구도 도출)

  • Young-Ho Jung;HyangSig Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.109-115
    • /
    • 2024
  • The Concept of Operations (ConOps) document issued by the Korean Government (K-UAM ConOps) for urban air mobility (UAM) services takes into account not only aviation voice communication but also the use of 4G and 5G mobile communication to support the initial phase of UAM services. This paper studies a methodology to establish communication performance requirements for UAM traffic management and presents the analyzed results for communication performance requirements. To accomplish this, the operational scenarios of UAM developmental stages outlined in the K-UAM ConOps and FAA ConOps are scrutinized, and the diverse messages that must be communicated among various stakeholders for effective UAM operations are identified. A draft of communication performance requirements is also calculated by considering packet sizes, transmission frequencies, acceptable latencies, and availability. The outcomes of this study are expected to stand as a pioneering effort in defining communication requirements for UAM services, providing a crucial foundation for future initiatives such as the design of dedicated communication networks for UAM and the determination of required frequency bandwidth.

Risk Assessment of a Drone Under the Gust and its Precise Flight Simulation (드론의 외풍 환경 비행 안전성 평가 및 정밀 시뮬레이션)

  • Lee, DongYeol;Park, SunHoo;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.3
    • /
    • pp.173-180
    • /
    • 2022
  • The operation and transportation environment for an unmanned aerial vehicle will be completely different from those for the conventional air and ground transportation. The requirement for a traffic management system for its safe operation has been emerging. Accordingly, investigation is being conducted to analyze the danger that unmanned aerial vehicle may encounter during the flight and to provide the countermeasure by the simulation. When the drones operate in an urban environment, they may be affected by the wind around the building. Thus it is essential to predict the influence of the gust and analyze the resulting risk. In this paper, a method for evaluating the safety for a flight mission under the gust is suggested. By using the precise 6-degree-of-freedom flight simulation that is capable of simulating the gust condition, possible deviation from the pre-planned flight path in terms of the attitude orientation will be predicted. A method of quantifying the probability of the flight mission failure will also be presented.