• Title/Summary/Keyword: unknown disturbance

Search Result 194, Processing Time 0.024 seconds

Compensation of Unknown Time-Varying Sinusoidal Disturbances in Nonlinear Systems using Disturbance Accommodation Technique (외란 보상 기법을 이용한 비선형시스템에서의 미지의 시변 사인파형 외란 보상)

  • Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1844-1851
    • /
    • 2007
  • This paper presents methods for the compensation of sinusoidal disturbances with unknown amplitude, phase, and time-varying frequency in nonlinear systems. In the previous disturbance accommodation methods, the sinusoidal disturbance with unknown time-invariant frequency was considered. In the proposed method, the disturbance with unknown time-varying frequency is compensated. As for the control structure, two control inputs are designed separately in such a way that one of them is designed for the nonlinear system control without considering the disturbance, and the other one uses the disturbance estimate obtained from the disturbance accommodating observer. The stability analysis is done considering the disturbance estimation error and the numerical simulation demonstrates the proposed approach.

Design of a Model-Based Low-Order Disturbance Observer to Estimate a Sinusoidal Disturbance with Unknown Constant Offset (미지의 상수 오프셋을 갖는 삼각함수 외란 추정을 위한 모델기반 저차 외란 관측기 설계)

  • Lee, Cho-Won;Son, Young Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.652-658
    • /
    • 2016
  • In practical control systems differences between nominal and real systems arise from internal uncertainties and/or external disturbances. This paper presents a model-based low-order disturbance observer for a sinusoidal disturbance with unknown constant offset. By using the disturbance model of a biased harmonic signal, the proposed method can successfully estimate the biased sinusoidal disturbance with unknown amplitude and phase but known frequency. At the first stage of the observer design, a model-based disturbance observer is designed when all the system states are measurable. Next, a sufficient condition is presented for the proposed observer to estimate the sinusoidal disturbance with a minimal-order additional dynamics using only output measurement. Comparative computer simulations are performed to test the performance of the proposed method. The simulation results show the enhanced performance of the proposed disturbance observer.

Novel Fuzzy Disturbance Observer based on Backstepping Method For Nonlinear Systems (비선형 시스템에서의 백스테핑 기법을 이용한 새로운 퍼지 외란 관측기 설계)

  • Baek, Jae-Ho;Lee, Hee-Jin;Park, Mig-Non
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.16-24
    • /
    • 2010
  • This paper is proposed a novel fuzzy disturbance observer based on backstepping method for nonlinear systems with unknown disturbance. Using fuzzy logic systems, a fuzzy disturbance observer with the disturbance observation input is introduced for unknown disturbance. To guarantee that the proposed disturbance observer estimates the unknown disturbance, the disturbance observation error dynamic system is employed. Under the framework of the backstepping design, the fuzzy disturbance observer is constructed recursively and an adaptive laws and the disturbance observation input are derived. Numerical examples are given to demonstrate the validity of our proposed disturbance observer for nonlinear systems.

Design of a Fuzzy Model Based Reduced Order Unknown Input Observer for a Class of Nonlinear Systems (비선형계를 위한 퍼지모델 기반 감소차수 미지입력관측자 설계)

  • Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1247-1253
    • /
    • 2008
  • A design method of a T-S fuzzy model based reduced order nonlinear unknown input observer(NUIO) is presented. The fuzzy NUIO is designed based on the parallel distributed compensation(PDC) concept. It consists of a number of the linear UIOs, each of which is designed for each local linear model in the T-S fuzzy model of a class of nonlinear systems. The fuzzy NUIO provides not only the state estimates insensitive to the unknown inputs, for example, disturbances and faults etc., but also the estimates of the unknown inputs. Therefore, It can be employed in the state feedback control and disturbance rejection control of a class of nonlinear systems with unknown disturbances. It also applied to the robust residual generation for the fault detection and isolation systems and to the design of fault tolerant control systems. As an example, the NUIO is applied to an inverted pendulum system to show the state and disturbance estimation performance and to illustrate the fuzzy reduced order NUIO design method.

State Feedback Control by Adaptive Observer for Plants with Unknown Disturbance

  • Araki, Kazutoshi;Michino, Ryuji;Mizumoto, Ikuro;Iwai, Zenta;Makino, Tomoya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.48.3-48
    • /
    • 2002
  • 1) Linear state feedback control design problem for plant with unknown deterministic disturbance is considered and a method to realize state feedback by using adaptive observer which estimates the unknown disturbance simultaneously is proposed. 2) From the viewpoint of practical application, we propose an extended adaptive observer with direct plant path from input to output, which is necessary to use the acceleration type sensors as plant output. 3) Theoretical result is confirmed by numerical simulation of 1-DOF vibration control system.

  • PDF

Adaptive Kalman Filter Design for an Alignment System with Unknown Sway Disturbance

  • Kim, Jong-Kwon;Woo, Gui-Aee;Cho, Kyeum-Rae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.86-94
    • /
    • 2002
  • The initial alignment of inertial platform for navigation system was considered. An adaptive filtering technique is developed for the system with unknown and varying sway disturbance. It is assumed that the random sway motion is the second order ARMA(Auto Regressive Moving Average) model and performed parameter identification for unknown parameters. Designed adaptive filter contain both a Kalman filter and a self-tuning filter. This filtering system can automatically adapt to varying environmental conditions. To verify the robustness of the filtering system, the computer simulation was performed with unknown and varying sway disturbance.

The State Estimation by Unknown Disturbance Observer of Underwater Vehicle System for Robust Control (강인한 제어를 위한 수중이동시스템의 상태추정에 대한 연구)

  • Lee, Jin-Woo;Kim, Hwan-Seong;An, Young-Joo
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2003
  • In this paper, and estimation method for estimating the states of underwater vehicle systems with external unknown disturbance is proposed. First, the dynamics of underwater vehicle are induced by Taylor series expansion in the vertical plane and horizontal plane, respectively. For constructing the system model, the external efforts, i.e., the sea surface disturbances, the current, wave and etc., are regarded as external unknown disturbances. Thus the disturbance is added as external input into state-space form of underwater vehicle system. To estimate the state of systems with unknown disturbance, a disturbance observer which does not effected the external unknown input is proposed, and the existence condition for the observer is given. Finally, the effectiveness of the proposed disturbance observer for robust control of underwater vehicle systems is verified by using numerical simulation.

Neural-networks-based Disturbance Observer and Tracker Design in the Presence of Unknown Control Direction and Non-affine Nonlinearities (미지의 제어 방향성과 비어파인 비선형성을 고려한 신경망 기반 외란 관측기와 추종기 설계)

  • Kim, Hyoung Oh;Yoo, Sung Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.666-671
    • /
    • 2017
  • A disturbance-observer-based adaptive neural tracker design problem is investigated for a class of perturbed uncertain non-affine nonlinear systems with unknown control direction. A nonlinear disturbance observer (NDO) design methodology using neural networks is presented to construct a tracking control scheme with the attenuation effect of an external disturbance. Compared with previous control results using NDO for nonlinear systems in non-affine form, the major contribution of this paper is to design a NDO-based adaptive tracker without the sign information of the control coefficient. The stability of the closed-loop system is analyzed in the sense of Lyapunov stability.

Estiamation of Vehicle Sideslip Angle for Four-Wheel Steering Passenger Cars

  • Kim, Hwan-Seoung;You, Sam-Sang
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.71-76
    • /
    • 2001
  • This paper deals with an estimation method for sideslip angle by using an unknown disturbance observation technique in 4WS passenger car systems. Firstly, a 4WS vehicle model with 3DOF is derived under the constant velocity and same tyres properties. The vehicle dynamics is transformed into the linear state space model with considering the external disturbances. Secondly, and unknown disturbance observer is introduced and its property which estimating the states of system without any disturbance information is shown. Lastly, the estimated sideslip angle of the 4WS vehicle system is verified through numerical simulation.

  • PDF

Robust Control for Unknown Disturbance of Robotic System Using Prescribed Tracking Error Constraint Control and Finite-Time SMC (규정된 추종오차 구속제어와 유한시간 슬라이딩 모드 제어를 이용한 로봇시스템의 미지의 외란에 대한 강인제어)

  • Ryu, Hyun-Jea;Shin, Dong-Suk;Han, Seong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.320-325
    • /
    • 2016
  • This paper presents a robust finite-time sliding mode control (SMC) scheme for unknown disturbance and unmodeled nonlinear friction and dynamics in the robotic manipulator. A finite-time SMC (FSMC) surface and finite-time sliding mode controller are constructed to obtain faster error convergence than the conventional infinite-time based SMC. By adding prescribed constraint control term to a finite-time SMC to compensate for unknown disturbance and uncertainties, a robust control scheme can be designed as well as faster convergence control. In addition, simpler controller structure is built by using feed-forwarding upper bound coefficients of each manipulator dynamic parameters instead of model-based control or adaptive observer to estimate unknown manipulator parameters. Simulation and experimental evaluations highlight the efficacy of the proposed control scheme for an articulated robotic manipulator.