• Title/Summary/Keyword: university e-learning

Search Result 2,132, Processing Time 0.039 seconds

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

An Analysis of the Change of Secondary Earth Science Teachers' Knowledge about the East Sea's Currents through Drawing Schematic Current Maps (해류도 그리기를 통한 중등학교 지구과학 교사들의 동해 해류에 대한 지식의 변화 분석)

  • Park, Kyung-Ae;Park, Ji-Eun;Lee, Ki-Young;Choi, Byoung-Ju;Lee, Sang-Ho;Kim, Young-Taeg;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.258-279
    • /
    • 2015
  • The purpose of this study was to analyze the change of secondary earth science teachers' knowledge about the currents of the East Sea through drawing of a schematic map of oceanic currents. For this purpose, thirty two earth science teachers participated in the six-hour long training of learning and practice related to ocean current schematic map. The teacher participants performed drawing of the ocean current schematic map of the East Sea in three different phases, i.e.; pre-, post-, and delayed-post phase. In addition, all the maps conducted by participants were converted to digitalized image data. Detailed analysis were performed to investigate participating teachers' knowledge about the currents of the East Sea. Findings are as follows: First, the teacher participants have background knowledge about the ocean current map, but it reveals an incorrect knowledge about some concepts. Second, after teacher training, teachers' knowledge increased about the East Sea's currents, while a decrease was found in the differences between individual teachers' knowledge. This pattern was more evident in the delayed-post phase of drawing than in the post-phase occurred immediately after training. Third, the teacher participants were strongly aware of the need to improve the ocean current schematic map of the East Sea in science textbook in terms of scientific knowledge. In addition, they showed a high level of satisfaction about teacher training because they perceived that it was meaningful in various aspects; recognizing the importance of content knowledge and conjunction with instructional strategies, the needs of secondary science curriculum, and recognition of the nature of scientific knowledge. The results imply that teachers' subject matter knowledge plays a significant role to make science teaching effective.

A Hybrid SVM Classifier for Imbalanced Data Sets (불균형 데이터 집합의 분류를 위한 하이브리드 SVM 모델)

  • Lee, Jae Sik;Kwon, Jong Gu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.125-140
    • /
    • 2013
  • We call a data set in which the number of records belonging to a certain class far outnumbers the number of records belonging to the other class, 'imbalanced data set'. Most of the classification techniques perform poorly on imbalanced data sets. When we evaluate the performance of a certain classification technique, we need to measure not only 'accuracy' but also 'sensitivity' and 'specificity'. In a customer churn prediction problem, 'retention' records account for the majority class, and 'churn' records account for the minority class. Sensitivity measures the proportion of actual retentions which are correctly identified as such. Specificity measures the proportion of churns which are correctly identified as such. The poor performance of the classification techniques on imbalanced data sets is due to the low value of specificity. Many previous researches on imbalanced data sets employed 'oversampling' technique where members of the minority class are sampled more than those of the majority class in order to make a relatively balanced data set. When a classification model is constructed using this oversampled balanced data set, specificity can be improved but sensitivity will be decreased. In this research, we developed a hybrid model of support vector machine (SVM), artificial neural network (ANN) and decision tree, that improves specificity while maintaining sensitivity. We named this hybrid model 'hybrid SVM model.' The process of construction and prediction of our hybrid SVM model is as follows. By oversampling from the original imbalanced data set, a balanced data set is prepared. SVM_I model and ANN_I model are constructed using the imbalanced data set, and SVM_B model is constructed using the balanced data set. SVM_I model is superior in sensitivity and SVM_B model is superior in specificity. For a record on which both SVM_I model and SVM_B model make the same prediction, that prediction becomes the final solution. If they make different prediction, the final solution is determined by the discrimination rules obtained by ANN and decision tree. For a record on which SVM_I model and SVM_B model make different predictions, a decision tree model is constructed using ANN_I output value as input and actual retention or churn as target. We obtained the following two discrimination rules: 'IF ANN_I output value <0.285, THEN Final Solution = Retention' and 'IF ANN_I output value ${\geq}0.285$, THEN Final Solution = Churn.' The threshold 0.285 is the value optimized for the data used in this research. The result we present in this research is the structure or framework of our hybrid SVM model, not a specific threshold value such as 0.285. Therefore, the threshold value in the above discrimination rules can be changed to any value depending on the data. In order to evaluate the performance of our hybrid SVM model, we used the 'churn data set' in UCI Machine Learning Repository, that consists of 85% retention customers and 15% churn customers. Accuracy of the hybrid SVM model is 91.08% that is better than that of SVM_I model or SVM_B model. The points worth noticing here are its sensitivity, 95.02%, and specificity, 69.24%. The sensitivity of SVM_I model is 94.65%, and the specificity of SVM_B model is 67.00%. Therefore the hybrid SVM model developed in this research improves the specificity of SVM_B model while maintaining the sensitivity of SVM_I model.

Optimal supervised LSA method using selective feature dimension reduction (선택적 자질 차원 축소를 이용한 최적의 지도적 LSA 방법)

  • Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.47-60
    • /
    • 2010
  • Most of the researches about classification usually have used kNN(k-Nearest Neighbor), SVM(Support Vector Machine), which are known as learn-based model, and Bayesian classifier, NNA(Neural Network Algorithm), which are known as statistics-based methods. However, there are some limitations of space and time when classifying so many web pages in recent internet. Moreover, most studies of classification are using uni-gram feature representation which is not good to represent real meaning of words. In case of Korean web page classification, there are some problems because of korean words property that the words have multiple meanings(polysemy). For these reasons, LSA(Latent Semantic Analysis) is proposed to classify well in these environment(large data set and words' polysemy). LSA uses SVD(Singular Value Decomposition) which decomposes the original term-document matrix to three different matrices and reduces their dimension. From this SVD's work, it is possible to create new low-level semantic space for representing vectors, which can make classification efficient and analyze latent meaning of words or document(or web pages). Although LSA is good at classification, it has some drawbacks in classification. As SVD reduces dimensions of matrix and creates new semantic space, it doesn't consider which dimensions discriminate vectors well but it does consider which dimensions represent vectors well. It is a reason why LSA doesn't improve performance of classification as expectation. In this paper, we propose new LSA which selects optimal dimensions to discriminate and represent vectors well as minimizing drawbacks and improving performance. This method that we propose shows better and more stable performance than other LSAs' in low-dimension space. In addition, we derive more improvement in classification as creating and selecting features by reducing stopwords and weighting specific values to them statistically.

  • PDF

A Study on Enhancing Personalization Recommendation Service Performance with CNN-based Review Helpfulness Score Prediction (CNN 기반 리뷰 유용성 점수 예측을 통한 개인화 추천 서비스 성능 향상에 관한 연구)

  • Li, Qinglong;Lee, Byunghyun;Li, Xinzhe;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.29-56
    • /
    • 2021
  • Recently, various types of products have been launched with the rapid growth of the e-commerce market. As a result, many users face information overload problems, which is time-consuming in the purchasing decision-making process. Therefore, the importance of a personalized recommendation service that can provide customized products and services to users is emerging. For example, global companies such as Netflix, Amazon, and Google have introduced personalized recommendation services to support users' purchasing decisions. Accordingly, the user's information search cost can reduce which can positively affect the company's sales increase. The existing personalized recommendation service research applied Collaborative Filtering (CF) technique predicts user preference mainly use quantified information. However, the recommendation performance may have decreased if only use quantitative information. To improve the problems of such existing studies, many studies using reviews to enhance recommendation performance. However, reviews contain factors that hinder purchasing decisions, such as advertising content, false comments, meaningless or irrelevant content. When providing recommendation service uses a review that includes these factors can lead to decrease recommendation performance. Therefore, we proposed a novel recommendation methodology through CNN-based review usefulness score prediction to improve these problems. The results show that the proposed methodology has better prediction performance than the recommendation method considering all existing preference ratings. In addition, the results suggest that can enhance the performance of traditional CF when the information on review usefulness reflects in the personalized recommendation service.

The Analysis on the Relationship between Firms' Exposures to SNS and Stock Prices in Korea (기업의 SNS 노출과 주식 수익률간의 관계 분석)

  • Kim, Taehwan;Jung, Woo-Jin;Lee, Sang-Yong Tom
    • Asia pacific journal of information systems
    • /
    • v.24 no.2
    • /
    • pp.233-253
    • /
    • 2014
  • Can the stock market really be predicted? Stock market prediction has attracted much attention from many fields including business, economics, statistics, and mathematics. Early research on stock market prediction was based on random walk theory (RWT) and the efficient market hypothesis (EMH). According to the EMH, stock market are largely driven by new information rather than present and past prices. Since it is unpredictable, stock market will follow a random walk. Even though these theories, Schumaker [2010] asserted that people keep trying to predict the stock market by using artificial intelligence, statistical estimates, and mathematical models. Mathematical approaches include Percolation Methods, Log-Periodic Oscillations and Wavelet Transforms to model future prices. Examples of artificial intelligence approaches that deals with optimization and machine learning are Genetic Algorithms, Support Vector Machines (SVM) and Neural Networks. Statistical approaches typically predicts the future by using past stock market data. Recently, financial engineers have started to predict the stock prices movement pattern by using the SNS data. SNS is the place where peoples opinions and ideas are freely flow and affect others' beliefs on certain things. Through word-of-mouth in SNS, people share product usage experiences, subjective feelings, and commonly accompanying sentiment or mood with others. An increasing number of empirical analyses of sentiment and mood are based on textual collections of public user generated data on the web. The Opinion mining is one domain of the data mining fields extracting public opinions exposed in SNS by utilizing data mining. There have been many studies on the issues of opinion mining from Web sources such as product reviews, forum posts and blogs. In relation to this literatures, we are trying to understand the effects of SNS exposures of firms on stock prices in Korea. Similarly to Bollen et al. [2011], we empirically analyze the impact of SNS exposures on stock return rates. We use Social Metrics by Daum Soft, an SNS big data analysis company in Korea. Social Metrics provides trends and public opinions in Twitter and blogs by using natural language process and analysis tools. It collects the sentences circulated in the Twitter in real time, and breaks down these sentences into the word units and then extracts keywords. In this study, we classify firms' exposures in SNS into two groups: positive and negative. To test the correlation and causation relationship between SNS exposures and stock price returns, we first collect 252 firms' stock prices and KRX100 index in the Korea Stock Exchange (KRX) from May 25, 2012 to September 1, 2012. We also gather the public attitudes (positive, negative) about these firms from Social Metrics over the same period of time. We conduct regression analysis between stock prices and the number of SNS exposures. Having checked the correlation between the two variables, we perform Granger causality test to see the causation direction between the two variables. The research result is that the number of total SNS exposures is positively related with stock market returns. The number of positive mentions of has also positive relationship with stock market returns. Contrarily, the number of negative mentions has negative relationship with stock market returns, but this relationship is statistically not significant. This means that the impact of positive mentions is statistically bigger than the impact of negative mentions. We also investigate whether the impacts are moderated by industry type and firm's size. We find that the SNS exposures impacts are bigger for IT firms than for non-IT firms, and bigger for small sized firms than for large sized firms. The results of Granger causality test shows change of stock price return is caused by SNS exposures, while the causation of the other way round is not significant. Therefore the correlation relationship between SNS exposures and stock prices has uni-direction causality. The more a firm is exposed in SNS, the more is the stock price likely to increase, while stock price changes may not cause more SNS mentions.

A Case Study of the PCK of Middle School Science Teachers on the Mendelian Genetics (멘델 유전에 대한 중학교 과학교사의 PCK 사례 연구)

  • Song, Mi-Ran;Kim, Sung-Ha
    • Journal of Science Education
    • /
    • v.38 no.3
    • /
    • pp.718-736
    • /
    • 2014
  • This study was intended to determine PCK of the middle school science teachers on Mendelian genetics and factors influenced to form their PCKs. Two science teachers with biology major with a teaching experience over 5 years were chosen as the subject. Data were collected by class observation, semi-structured interview, teacher questionnaire survey, Content Representation and Pedagogical and Professional-experience Repertoire. The collected data were analyzed based on Magnusson's PCK for science teaching consisting of five components: (a) the orientation toward teaching science, (b) the knowledge of science curriculum, (c) the knowledge of students' understanding, (d) the knowledge of assessment, and (e) the knowledge and belief in the instructional strategies to teach science. Teachers could have the orientation toward teaching science served as an assisting role to support students' abilities. Both subject teachers seemed to focus on giving lectures. Their efforts to improve students' exploration methods and abilities were not expressed enough in their real classes and they found that students struggled to understand Mendelian genetics. Therefore, they should have explained them in an easier way and worked harder to make their students understood accurately and applied basic and advanced concepts of Mendelian genetics. They found students' preconception and misconception regarding Mendelian genetics and wished to enhance their learning effects by various teaching strategies such as correcting misconception, adding the history of science and simply assessing students' affirmative domains. It was also found that factors influenced to form PCK regarding Mendelian genetics by both teachers were as follows: teacher's personality and endeavor, textbooks and guidance books, schools and their circumstances, teaching experience, experience as a learner, interaction with their colleagues, and university curriculum. Both teachers said that it was important for teachers to make every efforts to give better classes.

  • PDF

Ultrastructure of Degenerating Axon Terminals in the Basal Forebrain Nuclei of the Rat following Prefrontal Decortication (이마앞겉질을 제거시킨 흰쥐 앞뇌의 바닥핵무리에서 변성축삭종말의 미세구조연구)

  • Ahn, Byung-June;Ko, Jeong-Sik;Ahn, E-Tay
    • Applied Microscopy
    • /
    • v.35 no.3
    • /
    • pp.135-152
    • /
    • 2005
  • Prefrontal cortex is a psychological and metaphysical cortex, which deals with feeling, memory, planning, attention, personality, etc. And it also integrates above-mentioned events with motor control and locomotor activities. Prefrontal cortex works as a highest CNS center, since the above mentioned functions are very important for one's successful life, and further more they are upgraded every moments through memory and learning. Many of these highest functions are supposed to be generated via forebrain basal nuclei (caudate nucleus, fundus striati nucleus, accumbens septi nucleus, septal nucleus, etc.). In this experiment, prefrontal efferent terminals within basal forebrain nuclei were ultrastructurally studied. Spraque Dawley rats, weighing $250{\sim}300g$ each, were anesthetized and their heads were fixed on the stereotaxic apparatus (experimental model, David Kopf Co.). Rats were incised their scalp, perforated a 3mm-wide hole on the right side of skull at the 11mm anterior point from the frontal O point (Ref. 13, Fig. 1), suctioned out the prefrontal cortex including cortex of the frontal pole, with suction instrument. Two days following the operations, small tissue blocks of basal forebrain nuclei were punched out, fixed in 1% glutaraldehyde-1% paraformaldehyde solution followed by 2% osmium tetroxide solutions. Ultrathin sections were stained with 1% borax-toluidin blue solution, and the stained sections were obserbed with an electron microscope. Degenerating axon terminals were found within all the basal forbrain nuclei. Numbers of degenerated terminals were largest in the caudate nucleus, next in order, in the fundus striati nucleus, in the accumbens septi nucleus, and the least in the septal nucleus. Only axospinous terminals were degenerated within the caudate nucleus and the fundus striati nucleus, and they showed the characters of striatal motor control system. Axodendritic and axospinous terminals were degenerated within the accumbens septi nucleus and the lateral septal nucleus, and they showed the characters of visceral limbic system. Prefrontal role in integrating the limbic system with the striatal system, en route basal forebrain nuclei, was discussed.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

A Case Study on Students' Mathematical Concepts of Algebra, Connections and Attitudes toward Mathematics in a CAS Environment (CAS 그래핑 계산기를 활용한 수학 수업에 관한 사례 연구)

  • Park, Hui-Jeong;Kim, Kyung-Mi;Whang, Woo-Hyung
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.403-430
    • /
    • 2011
  • The purpose of the study was to investigate how the use of graphing calculators influence on forming students' mathematical concept of algebra, students' mathematical connection, and attitude toward mathematics. First, graphing calculators give instant feedback to students as they make students compare their written answers with the results, which helps students learn equations and linear inequalities for themselves. In respect of quadratic inequalities they help students to correct wrong concepts and understand fundamental concepts, and with regard to functions students can draw graphs more easily using graphing calculators, which means that the difficulty of drawing graphs can not be hindrance to student's learning functions. Moreover students could understand functions intuitively by using graphing calculators and explored math problems volunteerly. As a result, students were able to perceive faster the concepts of functions that they considered difficult and remain the concepts in their mind for a long time. Second, most of students could not think of connection among equations, equalities and functions. However, they could understand the connection among equations, equalities and functions more easily. Additionally students could focus on changing the real life into the algebraic expression by modeling without the fear of calculating, which made students relieve the burden of calculating and realize the usefulness of mathematics through the experience of solving the real-life problems. Third, we identified the change of six students' attitude through preliminary and an ex post facto attitude test. Five of six students came to have positive attitude toward mathematics, but only one student came to have negative attitude. However, all of the students showed positive attitude toward using graphing calculators in math class. That's because they could have more interest in mathematics by the strengthened and visualization of graphing calculators which helped them understand difficult algebraic concepts, which gave them a sense of achievement. Also, students could relieve the burden of calculating and have confidence. In a conclusion, using graphing calculators in algebra and function class has many advantages : formulating mathematics concepts, mathematical connection, and enhancing positive attitude toward mathematics. Therefore we need more research of the effect of using calculators, practical classroom materials, instruction models and assessment tools for graphing calculators. Lastly We need to make the classroom environment more adequate for using graphing calculators in math classes.