• Title/Summary/Keyword: unit-root test

Search Result 234, Processing Time 0.025 seconds

Nonstationary Time Series and Missing Data

  • Shin, Dong-Wan;Lee, Oe-Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.73-79
    • /
    • 2010
  • Missing values for unit root processes are imputed by the most recent observations. Treating the imputed observations as if they are complete ones, semiparametric unit root tests are extended to missing value situations. Also, an invariance principle for the partial sum process of the imputed observations is established under some mild conditions, which shows that the extended tests have the same limiting null distributions as those based on complete observations. The proposed tests are illustrated by analyzing an unequally spaced real data set.

A Unit Root Test Based on Bootstrapping

  • Shin, Key-Il;Kang, Hee-Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.257-265
    • /
    • 1996
  • We consider nonstationary autoregressive autoregressive process with infinite variance of error. In the case of infinite cariance, the limiting distribution of the estimated coefficient is different from that under the finite cariance assumption. In this paper we show that the bootstrap method can be used to approximate the distribution of ordinary least squares estimator of the coefficient in the first order random walk process with infinite variance through some empirical studies and we suggest a test procedure based on bootstrap method for the unit root test.

  • PDF

An Empirical Study on the Causalities and Effects between Inbound Tourism and Service Industry GDP in China (국제 인바운드 관광과 중국내 서비스 산업 GDP간의 인과관계 및 효과에 관한 실증연구)

  • Kim, Jong-Sup
    • International Area Studies Review
    • /
    • v.14 no.3
    • /
    • pp.363-387
    • /
    • 2010
  • This papers studies the causalities and effects on the relationship between inbound tourism(TOU) and the production amount of service industry in China, using the unit root test, the Granger causality test, the cointegration test, and VECM. we take their natural logarithm and define them as TOU and SGDP: these represent the distributed variable based the lagged values of the number of international tourists by continent and real production amount in service industry of China, respectively. The results of empirical study of this papers are as follows: Firstly, in the unit root test, we found that each time series was unstable one that has unit root. This result made me use 1st differenced data for this empirical study. Secondly, in the Granger casuality test, the study results show that there is unilateral casuality relation between DLSGDP-$DLTOU_i$ except DLSGDP-DLTOUL model for the same time, while no casuality relation between DLTOU-DLSGDP for all models of China. Thirdly, there is cointegration relation between all models for the period of 1980-2008.

Joint Test for Seasonal Cointegrating Ranks

  • Seong, Byeong-Chan;Yi, Yoon-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.5
    • /
    • pp.719-726
    • /
    • 2008
  • In this paper we consider a joint test for seasonal cointegrating(CI) ranks that enables us to simultaneously model cointegrated structures across seasonal unit roots in seasonal cointegration. A CI rank test for a single seasonal unit root is constructed and extended to a joint test for multiple seasonal unit roots. Their asymptotic distributions and selected critical values for the joint test are obtained. Through a small Monte Carlo simulation study, we evaluate performances of the tests.

A Multiple Unit Roots Test Based on Least Squares Estimator

  • Shin, Key-Il
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.1
    • /
    • pp.45-55
    • /
    • 1999
  • Knowing the number of unit roots is important in the analysis of k-dimensional multivariate autoregressive process. In this paper we suggest simple multiple unit roots test statistics based on least squares estimator for the multivariate AR(1) process in which some eigenvalues are one and the rest are less than one in magnitude. The empirical distributions are tabulated for suggested test statistics. We have small Monte-Calro studies to compare the powers of the test statistics suggested by Johansen(1988) and in this paper.

  • PDF

A Study on the Test and Visualization of Change in Structures Associated with the Occurrence of Non-Stationary of Long-Term Time Series Data Based on Unit Root Test (Unit Root Test를 기반으로 한 장기 시계열 데이터의 Non-Stationary 발생에 따른 구조 변화 검정 및 시각화 연구)

  • Yoo, Jaeseong;Choo, Jaegul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.7
    • /
    • pp.289-302
    • /
    • 2019
  • Structural change of time series means that the distribution of observations is relatively stable in the period of constituting the entire time series data, but shows a sudden change of the distribution characteristic at a specific time point. Within a non-stationary long-term time series, it is important to determine in a timely manner whether the change in short-term trends is transient or structurally changed. This is because it is necessary to always detect the change of the time series trend and to take appropriate measures to cope with the change. In this paper, we propose a method for decision makers to easily grasp the structural changes of time series by visualizing the test results based on the unit root test. Particularly, it is possible to grasp the short-term structural changes even in the long-term time series through the method of dividing the time series and testing it.

Effects of Order Misspecification on Unit Root Tests

  • Shin, Dong-Wan;Lee, Yoon-Dong
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.2
    • /
    • pp.171-180
    • /
    • 1997
  • Effects of order misspecification on statistical behavior of unit root tests are studied. We derive the limiting distributions of the Dickey-Fuller test statistics whose numerators are of the form c .int. W dW + .kappa. where W is a standard Brownian motion on [0, 1] and c is a real number. The term .kappa. is a major consequence of order misspecification and its explict expression is derived. Based on an analysis of .kappa., effects of order misspecification on unit root tests for AR(2), ARMA(1, 1), and AR(3) models are investigated.

  • PDF

ROBUST UNIT ROOT TESTS FOR SEASONAL AUTOREGRESSIVE PROCESS

  • Oh, Yu-Jin;So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.2
    • /
    • pp.149-157
    • /
    • 2004
  • The stationarity is one of the most important properties of a time series. We propose robust sign tests for seasonal autoregressive processes to determine whether or not a time series is stationary. The proposed tests are robust to the outliers and the heteroscedastic errors, and they have an exact binomial null distribution regardless of the period of seasonality and types of median adjustments. A Monte-Carlo simulation shows that the sign test is locally more powerful than the tests based on ordinary least squares estimator (OLSE) for heavy-tailed and/or heteroscedastic error distributions.

ROBUST UNIT ROOT TESTS FOR SEASONAL AUTOREGRESSIVE PROCESS

  • Oh, Yu-Jin;So, Beong-Soo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.281-286
    • /
    • 2003
  • The stationarity is one of the most important properties of a time series. We propose robust sign tests for seasonal autoregressive process to determine whether or not a time series is stationary. The tests have an exact binomial null distribution and are robust to the outliers and the heteroscedastic errors. Monte-Carlo simulation shows that the sign test is locally more powerful than the OLSE-based tests for heavy-tailed and/or heteroscedastic error distributions.

  • PDF

BAYESIAN INFERENCE FOR MTAR MODEL WITH INCOMPLETE DATA

  • Park, Soo-Jung;Oh, Man-Suk;Shin, Dong-Wan
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.183-189
    • /
    • 2003
  • A momentum threshold autoregressive (MTAR) model, a nonlinear autoregressive model, is analyzed in a Bayesian framework. Parameter estimation in the presence of missing data is done by using Markov chain Monte Carlo methods. We also propose simple Bayesian test procedures for asymmetry and unit roots. The proposed method is applied to a set of Korea unemployment rate data and reveals evidence for asymmetry and a unit root.

  • PDF