• Title/Summary/Keyword: unit fraction

Search Result 341, Processing Time 0.021 seconds

The Metabolism of (2-$^{14}C$) Mevalonic Acid on Photoperiodic Induction in Grafted Solanum Andigena

  • Bae, Moo;Mercer, E.I.
    • Nuclear Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.73-84
    • /
    • 1970
  • The metabolism of sterol precurosor in leaves of Salanum andigena grafted between photoinduced and noninduced plant was investigated with the use of (2-$^{14}$ C) mevalonic acid. By the technique of the preparative gas-liquid chromatography, radioactive compounds of squalene, 4,4’-dimethylsterols and 4-demethylsterol were isolated and determined quantitatively. When labeled mevalonic acid n as applied to leaves radioactivity was extensively incorporated into non-saponifiable materials of lipid fraction and aqueous fraction (ethanol-water fraction). Radioactivity of 14C derived from (2-$^{14}$ C) mevalonic acid was transmissible from photoinduced plant to non-induced plant across the graft union, as tuberization hormone was, and incorporated into the sterols of the non-induced plant. Inhibitors of sterol biosynthesis, SK & F 7997 and nicotinic acid, are effective suppressors of tuber growing, if applied to leaves during photoinduction period. The experimental results suggest that certain substance containing isoprene unit, or sterol-like compound may participate in tuber growing.

  • PDF

Neutronics modeling of bubbles in bubbly flow regime in boiling water reactors

  • Turkmen, Mehmet;Tiftikci, Ali
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1241-1250
    • /
    • 2019
  • This study mainly focused on the neutronics modeling of bubbles in bubbly flow in boiling water reactors. The bubble, ring and homogenous models were used for radial void fraction distribution. Effect of the bubble and ring models on the infinite multiplication factor and two-group flux distribution was investigated by comparing with the homogenous model. Square pitch unit cell geometry was used in the calculations. In the bubble model, spherical and non-spherical bubbles at random positions, sizes and shapes were produced by Monte Carlo method. The results show that there are significant differences among the proposed models from the viewpoint of physical interaction mechanism. For the fully-developed bubbly flow, $k_{inf}$ is overestimated in the ring model by about $720{\pm}6pcm$ with respect to homogeneous model whereas underestimated in the bubble model by about $-65{\pm}9pcm$ with a standard deviation of 15 pcm. In addition, the ring model shows that the coolant must be separated into regions to properly represent the radial void distribution. Deviations in flux distributions principally occur in certain regions, such as corners. As a result, the bubble model in modeling the void fraction can be used in nuclear engineering calculations.

A comprehensive laboratory compaction study: Geophysical assessment

  • Park, Junghee;Lee, Jong-Sub;Jang, Byeong-Su;Min, Dae-Hong;Yoon, Hyung-Koo
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.211-218
    • /
    • 2022
  • This study characterizes Proctor and geophysical properties in a broad range of grading and fines contents. The results show that soil index properties such as uniformity and fines plasticity control the optimum water content and peak dry unit trends, as well as elastic wave velocity. The capillary pressure at a degree of saturation less than S = 20% plays a critical role in determining the shear wave velocity for poorly graded sandy soils. The reduction in electrical resistivity with a higher water content becomes pronounced as the water phase is connected A parallel set of compaction and geophysical properties of sand-kaolinite mixtures reveal that the threshold boundaries computed from soil index properties adequately capture the transitions from sand-controlled to kaolinite-controlled behavior. In the transitional fines fraction zone between FF ≈ 20 and 40%, either sand or kaolinite or both sand and kaolinite could dominate the geophysical properties and all other properties associated with soil compaction behavior. Overall, the compaction and geophysical data gathered in this study can be used to gain a first-order approximation of the degree of compaction in the field and produce degree of compaction maps as a function of water content and fines fraction.

Production of Casein Hydrolysates from Concentrated Skim Milk Using Ultrafiltration Techniques

  • Hee Song Kim;Dong Hun Yang;Seok Jun Park;Hye Jin Kim;Hyoung Su Park;Eui-Jong Lee;Mee-Ryung Lee
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.149-156
    • /
    • 2023
  • Milk protein is often fractionated/concentrated by using various techniques in dairy industries. Among these techniques, ultrafiltration (UF) is particularly efficient at concentrating the casein fraction of milk protein. The objectives of this study were to produce casein hydrolysates by concentrating the casein fraction in skim milk using the UF technique and to investigate the chemical composition of the casein hydrolysates. The skim milk was concentrated using a UF laboratory test unit equipped with 10 kDa and 30 kDa membranes. After UF, the protein content of the milk was concentrated up to ~7.2% and the Ca was concentrated up to ~196 mg/100 g of milk. Trypsin was then added to the concentrated skim milk to produce the casein hydrolysates. The results of sodium dodecyl sulphate-polyacrylamide gel electrophoresis showed that the casein fraction was not present after hydrolysis, indicating that casein in the milk had been hydrolyzed. The Ca content in the casein hydrolysates was much higher (p<0.05) compared to Ca content in commercial casein phosphopeptides (CPP) indicating that was acidified during the manufacture of commercial CPP. In conclusion, it seems that casein hydrolysates containing large concentrations of protein and Ca can also be made from concentrated UF milk without acidification or renneting.

Analysis for Properties of Ceramic/Metal Composite Based on Micromechanics of materials (세라믹/금속복합재료에 대한 미시역학적 특성해석)

  • 김병식;김태우
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.144-148
    • /
    • 2001
  • A proper estimation of the mechanical properties for composites has been required for better design/selection of constituents for composite materials. Present investigation shows the simulation results for ceramic reinforced metal matrix composite under uniaxial transverse tensile loading. The resulting transverse mean stress with the transverse mean strain was described for composites as a function of the volume fraction with two different types of interfacial bonding: (1)strongly bonded interface, and (2)no bonded interface. A two-dimensional finite element modeling and analysis were conducted based on the unit-cell concept with an assumption of a regular square arrangement of the reinforcement within the composite. The mean stress was generally increased with the ceramic volume fraction for composite with strong interface bonding. The micromechanics concept combined with finite element modeling for composite can be used in order to predict the transverse properties of composites with a priori known properties of constituents.

  • PDF

A study on the economic production quantity model with partial backorders (부분부재고를 고려한 경제적 생산량모델에 관한 연구)

  • ;;Kim, Jung Ja
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.3
    • /
    • pp.81-91
    • /
    • 1994
  • This paper is to build an economic production quantity model for situations, in which, during the stockout period, a fraction .betha.(backorder ratio) of the demand is backordered and remaining fraction (1-.betha.) is lost. This paper develops an objective function representing the average annual cost of a production system by defining a time-weighted backorder cost and a lost sales penalty cost per unit lost under the assumptions of deterministic demand rate and deterministic production rate, and provides an algorithm for its optimal solution. At the extreme .betha.= 1, the presented model reduces to the Fabrycky's model with complete backorders.

  • PDF

A Study on the Inventory Model with Partial Backorders under the Lead Time Uncertainty (조달기간(調達期間)이 불확실(不確實)한 상황하에서의 부분부(部分負) 재고모형(在庫模型)에 관한 연구(硏究))

  • Lee, Kang-Woo;Lee, Sang-Do
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 1991
  • This paper presents a single-echelon, single item, stochastic lead time and static demand inventory model for situations in which, during the stockout period, a fraction ${\beta}$ of the demand is backordered and the remaining fraction $(1-{\beta})$ is lost. In this situations, an objective function representing the average annual cost of inventory system is obtained by defining a time-proportional backorder cost and a fixed penalty cost per unit lost. The optimal operating policy variables minimizing the average annual cost are calculated iteratively. At the extremet ${\beta}=1$, the model presented reduces to the usual backorder case. A numerical example is solved to illustrate the algorithm developed.

  • PDF

Spectral Mixture Analysis for Desertification Detection in North-Eastern China

  • Yoon Bo-Yeol;Jung Tae-Woong;Yoo Jae-Wook;Kim Choen
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.419-422
    • /
    • 2004
  • This paper was carried out desertification area change detection from 1980s to 2000s per unit decade using by multitemporal satellite images (Landsat MSS, TM, ETM+). This study aims to use Spectral Mixture Analysis (SMA) to identify and classify study area. Endmembers is selected bare soil, green vegetation (GV), water body using by Minimum Noise Fraction (MNF). Endmembers used to generate increase and decrease images respective from 1980s to 1990s and from 1990s to 2000s. From the analysis of multitemporal change detection for three periods, it was apparent that the area of bare soil increased significantly, with simultaneous decrease of GV and water body. The multitemporal fraction images can be effectively used for change detection. Though there is no field survey dataset, SMA is reliable result of change detection in desertification in China.

  • PDF

A Numerical Investigation on the Rule of Mixtures for the Mechanical Properties of Composites with Homogeneously Distributed Particles (입자가 균일하게 분포된 복합체의 기계적 성질과 혼합률에 관한 수치적 연구)

  • 김형섭
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.396-401
    • /
    • 2001
  • The concept of the mixtures can be used not only in the composites but also in the materials with precipitates and matrix. In this investigation, the finite element method of axisymmetric unit cell models and the rule of mixtures of the Voigt and the Reuss models are used to analyze the overall mechanical response of composites with homogeneously distributed particles. The calculations have been cameo out by taking the materials as i) hardening and ii) perfect plastic materials. The Plastic properties are predicted for various volume fractions of the soft and hard particles. The computational results are compared with the results of the rule of mixtures. It is found that the plastic flow curves agree well with the Voigt model when the volume fraction of the particles is high. On the other hand, the calculated flow curves exist between the Voigt model and the Reuss model when the volume fraction of the particles is low.

  • PDF

Study on Regenerative Rankine Cycle with Partial-Boiling Flow Using Ammonia-Water Mixture as Working Fluid (암모니아-물 작동유체의 부분증발유동을 적용한 재생 랭킨사이클에 관한 연구)

  • Kim, Kyoung-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.3
    • /
    • pp.223-230
    • /
    • 2011
  • The power cycle using ammonia-water mixture as a working fluid is a possible way to improve efficiency of the system of low-temperature source. In this work thermodynamic performance of the ammonia-water regenerative Rankine cycle with partial-boiling flow is analyzed for purpose of extracting maximum power from the source. Effects of the system parameters such as mass fraction of ammonia, turbine inlet pressure or ratio of partial-boiling flow on the system are parametrically investigated. Results show that the power output increases with the mass fraction of ammonia but has a maximum value with respect to the turbine inlet pressure, and is able to reach 22 kW per unit mass flow rate of source air at $180^{\circ}C$.